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Abstract

We introduce a principal components model for securities’ returns. The components are
non-normal, exhibiting significant skewness and kurtosis. The model can explain a large
proportion of the variance of the securities’ returns with only one or two components.
Third and higher-order components individually contribute so little that they can be
considered to be noise terms.

1 Introduction

In this paper, we propose a non-normal principal component model of the stock market. We
create the model from a statistical study of a broad cross-section of approximately 5,000 US
equities daily for 20 years.

In our analysis, we find that only a small number of components can explain a significant
amount of the variance of the securities’ return. Generally, third and higher-order compo-
nents (essentially, the idiosyncratic terms) individually contribute so little to the variance
that they can be considered to be noise terms.

Importantly, we find that neither the significant components nor the idiosyncratic terms
are normally distributed. Both sets exhibit significant skewness and kurtosis.

Therefore, traditional models based on normal distributions are not fully descriptive of
security returns. They can neither represent the extreme movements and comovements that
security returns often exhibit, nor the low-level economically insignificant noise that security
returns also often exhibit. However, these characteristics can be represented by the model
presented in this paper.

The finding of non-normality implies that meaningful security analysis requires statistical
measures (1) that are insensitive to extreme moves, (2) that are also not influenced by small
movements that may be noise, but (3) that still capture information in movements when
such movements are meaningful. In Gerber et al. [2019], we introduced the Gerber statistic
(GS), which is a robust measure of correlation that satisfies all three of these requirements.
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Precursors

Portfolio construction [Markowitz, 1952, 1959] relies heavily on the availability of the matrix
of covariances between securities’ returns. Often the sample covariance matrix is used as an
estimate for the actual covariance matrix. But as early as Sharpe [1963], it has been known
that a single factor approximation of this matrix leads to portfolios that outperform those
constructed from the sample covariance matrix.

Factor models originated with Spearman [1904], who showed that one can reduce the
dimension of a model by expressing the model variables as linear combinations of underlying
common factors plus random idiosyncratic terms. Quantitative analysts have embraced this
methodology, and factor models for security returns now abound. These models range from
the early single factor model of Sharpe [1963], through the three and more factor models of
Fama and French [1992, 1993], past the multifactor model of Rosenberg and Maranthe [1976],
to modern models using tens or even hundreds of quantitative and categorical explanatory
variables.

This diversity in models is possible because of an important property of factor analysis:
The factors and the factor loadings are not unique. That is, the factors can be rotated using
any orthonormal matrix and the model remains identical. Therefore, in the abstract, any
model can be expressed as a rotated version of any other model.

Nevertheless, despite the numerous studies of these factors, we are unaware of research
focused on the statistical distributions of the factors themselves. As described by Cont
[2001], a study by Laloux et al. [2000] showed that principal components, apart from the
ones corresponding to the largest few eigenvalues, “do not seem to contain any information:
in fact, their marginal distribution closely resembles the spectral distribution of a positive
symmetric matrix with random entries whose distribution is the ‘most random possible’—
i.e., entropy maximizing. These results strongly question the validity of the use of the sample
covariance matrix as an input for portfolio optimization ... and support the rationale behind
factor models ... where the correlations between a large number of assets are represented
through a small number of factors.” We will use such a low-order principal component model,
but will examine in more detail the statistics of the principal components.

2 Theory

Our objective is to examine the characteristics of securities’ returns through the lens of a
factor model. The structure of the model follows the general form

rtj =
K∑
k=1

ftkxjk + εtj (1)

where xjk is the exposure of security j to a component k, ftk is the return of component k
for time period t, and εtj is an idiosyncratic or noise term. The ftk terms can be considered
to be the “drivers” of the securities’ returns. With obvious notation, Equation (1) in matrix
form is

R = FX> + E (2)
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The model in Equations (1) and (2) is extremely versatile and includes factor models,
smart-beta models, econometric models, time series models, statistical models, and many
others as special cases. For example, in the case of a factor model, the components could
be financial statement data such as earnings yield, dividend yield, and so on. Here, xjk
would represent the financial data itself (centered and scaled to a standard deviation of one
across the investment universe) and ftk would represent the return obtained in period t from
a one-standard deviation exposure to factor k. The model places no restriction on whether
any of the returns should be raw, excess, or active.

The model can operate in several modes. For example, with the model in an identification
mode, the exposures and security returns are assumed to be known, and the returns to the
factors are found by linear or generalized regression. With the model in a prediction or data
generating mode, the ftk are assumed to be known, the εtj are replaced by their expected
values of zero, and the security returns rtj are computed as linear combinations of the
component returns ftk.

We can use the model in the data identification mode to gain a better understanding
of market characteristics. For this purpose, we perform principal component analysis on a
broad range of stocks to find the statistical distributions of important components.

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933] produces a parsi-
monious summary of data in terms of orthogonal sets of standardized linear combinations
of the original data.

Consider again the return matrix R whose columns represent different securities and
whose rows represent different time intervals. We remove the mean of each column of R
to obtain the “centered” return matrix Rc. The sample covariance matrix of the returns is
then

C =
1

M − 1
R>

c Rc,

where M is the number of time samples.
The singular value decomposition (SVD) [Golub and Van Loan, 2013] of Rc is

Rc = WTOTSTOTX
>
TOT

where WTOT and XTOT are unitary matrices (i.e., matrices whose inverses equal their con-
jugate transposes) and STOT is a diagonal matrix whose elements sk; k = 1, . . . , K are the
singular values of Rc. The singular values are non-negative real numbers.

In terms of the singular value decomposition, the sample covariance matrix is

C =
1

M − 1
XTOTSTOTW

>
TOTWTOTSTOTX

>
TOT

=
1

M − 1
XTOTS

2
TOTX

>
TOT,

which can be rearranged to give

CXTOT = XTOT

(
1

M − 1
S2

TOT

)
.
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The latter expression is the eigendecomposition of the covariance matrix. Therefore, the
singular values are related to the eigenvalues λk; k = 1, . . . , K, of the sample covariance C
by the identity

λk =
1

M − 1
s2k.

Each eigenvalue is equal to the variance of its respective principal component.
Letting WTOTSTOT = FTOT, the centered return matrix Rc can be written in the principal

component form
Rc = FTOTX

>
TOT (3)

where the matrix FTOT (called the score) has columns that are mutually orthogonal. The
matrix XTOT is a rotation matrix called the coefficient or loading matrix. Importantly, each
column of FTOT is called a principal component and can be considered to be a time series.
The centered return matrix Rc, therefore, is a linear combination of mutually orthogonal
time series. These principal components are entirely analogous to factor return time series.

Equation (3) is an identity; that is, the return matrix on the left hand side is exactly
equal to the decomposition on the right hand side. If, however, we consider a small number
of principal components (say m components) to describe the data with sufficient accuracy,
we can categorize the remaining K −m components as noise. Accordingly, we can partition
FTOT and XTOT into signal and noise parts as follows:

Rc =
[
FSIG FNOISE

] [ X>
SIG

X>
NOISE

]
= FSIGX

>
SIG + E (4)

where E = FNOISEX
>
NOISE is a noise matrix, and can be considered to be the “idiosyncratic”

part of the decomposition. That is, the entry in the t-th row and the j-th column of E is
the idiosyncratic return of the j-th security over interval t. Note the direct correspondence
between the representations in Equation (4) and (2).

Making use of the decomposition of Rc into its signal and noise components, and the
properties of the unitary matrices, we find that the covariance matrix is

C = XSIGΛSIGX
>
SIG +XNOISEΛNOISEX

>
NOISE,

= CSIG +CNOISE,

where ΛSIG and ΛNOISE are diagonal matrices containing the eigenvalues of the signal and
noise parts, respectively. Note that ΛSIG is an m×m matrix. In particular, if m = 1, it is a
scalar.

Notice that the noise covariance matrix XNOISEΛNOISEX
>
NOISE is not diagonal. Therefore,

the idiosyncratic terms are not orthogonal, but are mutually correlated.

3 Empirical Results

In our empirical tests, we used twenty years of daily returns from approximately 5,000 US
stocks. We truncated the absolute value of returns to 30% to prevent our results being
unduly influenced by outliers. We separated the period from the beginning of 1998 to the
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end of 2017 into ten non-overlapping two-year intervals. For each interval we performed
1,000 repetitions of the following test.

In each test, we chose 100 stocks randomly with replacement from the available universe.
For each two-year sample of 100 stocks, we formed a centered return matrix Rc as described
above, and computed the principal component score matrix F and loading matrix X. Recall
that the columns of F represent orthogonal time series. The first column is the vector that
best explains all columns of Rc. The second column of F is the vector that is orthogonal to
the first column, and best explains the remainder of the variance in Rc. Similarly, for n > 1,
the nth column of F is the one that is orthogonal to all preceding n − 1 columns and best
explains the remaining variance in Rc.

Table 1 lists the summary statistics (pooled over all two-year periods and all experiments)
of the variance explained by the first ten principal components. This shows that the median
variance explained by the first two principal components (PC01 and PC02) are 12.8% and
7.4%, respectively. Beyond the third principal component, the variance explained falls below
5%.

min Q1 med Q3 max
PC01 5.56 11.09 12.82 15.75 37.61
PC02 3.20 6.07 7.44 9.06 19.54
PC03 2.51 4.73 5.53 6.55 12.74
PC04 2.21 4.02 4.58 5.24 10.08
PC05 2.11 3.53 3.97 4.44 7.91
PC06 1.95 3.17 3.52 3.89 6.24
PC07 1.61 2.86 3.18 3.49 5.66
PC08 1.53 2.62 2.92 3.18 4.56
PC09 1.35 2.41 2.69 2.91 4.25
PC10 1.32 2.23 2.50 2.70 3.87

Table 1: Pooled Summary Statistics of Variance Explained by the First 10 Principal Com-
ponents
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Figure 1 gives a graphical representation of the data summarized in Table 1. From it,
we see again that the first component explains the most variance in the returns. In many
cases, the first component explains more than 30% of the variance in the returns. Using a
10% cutoff for significance, we believe that the returns can be explained by a single-factor
model; i.e., a model using only the first principal component.
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Figure 1: Box Plots of Variance Explained by the First 10 Principal Components
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The variance explained by the principal components varies by time period. Table 2
shows the median variance explained by the first five principal components for the ten two-
year periods from the beginning of 1998 to the end of 2017. Naturally, the first principal
component always explains more variance than the other components. However, it is clear
that in the 2008–2009 period, PC01 explains more variance than other times, and much more
than is explained by other components at the same time. This, of course, corresponds to
a period in which stock returns were highly correlated. Thus, a single component explains
stock returns, and that single component is the principal component analog of the market.

PC01 PC02 PC03 PC04 PC05
1998–1999 8.76 6.90 5.65 4.80 4.17
2000–2001 12.15 6.54 4.90 4.18 3.75
2002–2003 12.22 8.28 5.91 4.82 4.11
2004–2005 11.21 8.49 6.36 5.02 4.28
2006–2007 13.91 8.49 5.97 4.63 3.84
2008–2009 26.91 5.03 4.18 3.60 3.17
2010–2011 24.70 9.00 5.43 4.07 3.36
2012–2013 12.35 9.13 6.78 5.36 4.42
2014–2015 13.17 6.77 5.42 4.71 4.17
2016–2017 11.96 6.75 5.38 4.65 4.12

Table 2: Median Variance Explained by First Five Principal Components over Time.
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Figure 2 shows histograms of the statistics of the first principal component for each of
the 1,000 experiments conducted for 100 companies for every two-year period from 1998 to
2000.

1. The top panel of the figure shows the variance explained in each experiment. The
variance explained is skewed left with a median of about 8.5%.

2. The second panel shows the standard deviation of the first principal component. The
distributional shape of the standard deviations is not clear, but lie in the range of 9%
to 14%.

3. The third panel shows the skewness of the first component. This is clearly bimodal.
The reason for the bimodality is that principal components are unique only up to a
change of sign. Therefore, the sign of all odd moments is indeterminate.

4. The bottom panel shows the kurtosis of the first principal component. A normal
distribution has a kurtosis of 3. Here, we see that in the vast majority of cases, the
kurtosis is greater than 3, and the distributions are therefore leptokurtic.

Figures 2 through 11 show the histograms for all two-year periods studied. In each figure,
the layout is the same as that described above.

The ambiguity in the signs of the principal components is an important issue when one
tries to compute statistics of these components. We have tried to resolve the ambiguity for the
first principal component at least. We believe that the first principal component represents
an estimate of the market. Therefore, this component should be positively correlated with
a broad market index. Accordingly, we computed the correlation between the Russell 3000
Index returns and the first principal component in every experiment. We multiplied the
first principal component by the sign of this correlation, in this way attempting to ensure
that the first principal component and the market were positively correlated. This should
have removed the ambiguity in the signs of the odd order moments and resulted in unimodal
odd-order moments.

The results of the transformation were largely successful, although periods 1998–2000,
2004–2005, 2006–2007, and 2012–2013 still show some bimodal behavior. Nevertheless, visual
inspection of the graphs shows the following:

• The standard deviation of the first principal component is approximately 10%. Recall
that the component itself is constrained to have a norm of one.

• Looking at only the most prominent mode in each case, the skewness is approximately
positive 25% or negative 25%.

• The kurtosis is significantly greater than the normal kurtosis of 3.

Although not shown in the figures, the mean of the principal component was indistinguishable
from zero in each case.

In addition to the results described above, for each test, we also computed the first four
moments (M1 through M4) of the first principal components. The first moment was zero, and
the second through fourth are listed in Table 3. Note that the third moment is contaminated
because of the sign ambiguity discussed above.
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M2 M3 M4
1998–1999 1.32E-02 -1.00E-04 8.00E-04
2000–2001 2.34E-02 7.00E-04 2.40E-03
2002–2003 1.60E-02 2.00E-04 9.00E-04
2004–2005 9.10E-03 -1.00E-04 4.00E-04
2006–2007 1.03E-02 -2.00E-04 5.00E-04
2008–2009 6.24E-02 -9.00E-04 2.06E-02
2010–2011 2.52E-02 -1.00E-03 3.50E-03
2012–2013 9.90E-03 -1.00E-04 4.00E-04
2014–2015 1.05E-02 -2.00E-04 4.00E-04
2016–2017 1.09E-02 -2.00E-04 5.00E-04

Table 3: Moments of the First Principal Component.

Conclusion

In this paper, we propose a model that accurately mimics the statistical properties of security
returns. We find that realistic security returns can be generated by a low-order principal
component model. We examined the statistics of a large cross section of US equities for the
ten two-year periods from 1998 to 2017. In all periods, the principal components were highly
skewed and leptokurtic.

Previously [Gerber et al., 2019], we introduced the Gerber statistic, which is a robust
measure of correlation between two time series. The statistics reported in the current paper,
and the return model proposed, show that characteristics of the market may make the Gerber
statistic a better comovement measure for portfolio construction than traditional correlation.
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Figure 2: Histograms for the Period 1998–1999
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Figure 3: Histograms for the Period 2000–2001
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Figure 4: Histograms for the Period 2002–2003
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Figure 5: Histograms for the Period 2004–2005
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Figure 6: Histograms for the Period 2006–2007
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Figure 7: Histograms for the Period 2008–2009
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Figure 8: Histograms for the Period 2010–2011
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Figure 9: Histograms for the Period 2012–2013
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Figure 10: Histograms for the Period 2014–2015
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Figure 11: Histograms for the Period 2016–2017
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