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Sander Gerber
Sander Gerber is Chief Executive Officer and Chief Investment Officer of Hudson Bay Capital, 
a multi-strategy hedge fund manager investing globally. Mr. Gerber has more than 30 years 
of investing experience in multiple securities classes and derivatives across a broad range 
of strategies.

In 2008, Mr. Gerber developed the Gerber Statistic, which was accepted as an innovation 
complementary to his own work by Dr. Harry Markowitz, the Nobel Prize-winning economist 
and father of Modern Portfolio Theory (MPT). The Gerber Statistic is utilized by Hudson Bay to 
identify the co-movement of financial assets, enabling early detection of concentration risks 
and insufficient diversification. Subsequently, Messrs. Gerber and Markowitz, in a landmark 
research paper published in The Journal of Portfolio Management, gave further validation to 
replacing historical correlation in the calculation of covariance with the Gerber Statistic. The 
result, as described in Institutional Investor, “leads to outperformance in cumulative return, 
average geometric return, and Sharpe ratio.” 

Mr. Gerber began his investment career in 1991, as a member of the American Stock 
Exchange working as an equity options market maker. In 1997, he founded Gerber Asset 
Management to develop and engage in proprietary investment strategies. In late 2005, Mr. 
Gerber and Yoav Roth co-founded Hudson Bay Capital, which concentrates on generating 
positive returns while maintaining a focus on risk management and capital preservation. 

Mr. Gerber is a member of the Council on Foreign Relations and the Economic Club of New 
York. He is a fellow and board member of the Jerusalem Center for Public Affairs and serves 
as a member of the United States Agency for International Development’s Partnership for 
Peace Fund Advisory Board. Mr. Gerber served as a member of the Senior Advisory Group 
to the Director of National Intelligence from 2017–2019. Formerly, Mr. Gerber was the Vice 
Chairman of the Woodrow Wilson International Center for Scholars, and Chairman of its 
Investment Committee.  

Mr. Gerber graduated cum laude from the University of Pennsylvania, with a BSE in Finance 
from Wharton and a BA in Humanistic Philosophy from the College of Arts and Sciences.  

Harry M. Markowitz
Recipient of the Nobel Memorial Prize in Economic Sciences
Dr. Harry Markowitz is a Nobel Prize winning economist who devised the modern portfolio 
theory, introduced to academic circles in his article, “Portfolio Selection,” which appeared 
in the Journal of Finance in 1952. Dr. Markowitz’s theories emphasized the importance of 
portfolios, risk, the correlations between securities, and diversification. His work, in collabo-
ration with Merton H. Miller and William F. Sharpe, changed the way that people invested. 
These three intellectuals shared the 1990 Nobel Prize in Economics. 

Hudson Bay Capital Management LP is a manager of alternative investment opportunities in the 
global markets targeting traditional and non-traditional sources of alpha by employing a diverse 
set of catalyst-driven absolute return strategies that are intended to be uncorrelated to each other 

and to the major indices. Our multiple portfolio teams invest across the corporate capital structure, 
often in conjunction with an event or catalyst, in an effort to exploit market inefficiencies. Founded in 
December 2005, with Sander Gerber as Chief Investment Officer, the firm seeks to achieve persistently 
positive returns while maintaining a focus on risk management and capital preservation.
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After taking an early interest in physics and philosophy, Dr. Markowitz received a B.A. from 
the University of Chicago. It was here that he decided to continue his studies focusing on 
economics. During this time, he had the opportunity to study under important economists 
including Milton Friedman, Tjalling Koopmans, Jacob Marschak and Leonard Savage. While 
still a student, he was invited to become a member of the Cowles Commission.

While writing his dissertation Dr. Markowitz chose to apply mathematics to the analysis of 
the stock market. This led to the development of his seminal theory of portfolio allocation 
under uncertainty, published in 1952 by the Journal of Finance. In the same year, Dr. Mar-
kowitz went to work for the RAND Corporation, where he met George Dantzig. With Dantzig’s 
help, Dr. Markowitz started to research optimization techniques, developing the critical line 
algorithm for the identifications of the optimal mean-variance portfolios, relying on what was 
later named the Markowitz Frontier. 

In 1955, he received a Ph.D. from the University of Chicago with a thesis on the portfolio 
theory. The topic was so novel that while Markowitz was defending his dissertation, Milton 
Friedman jokingly argued that portfolio theory was not economics. During 1955-1956 Mar-
kowitz spent a year at the Cowles Foundation, which had moved to Yale University, at the 
invitation of James Tobin. He published the critical line algorithm in a 1956 paper and used 
the time at the foundation to write a book on portfolio allocation which was published in 1959.

Markowitz won the Nobel Prize in Economics in 1990, while a professor of finance at Baruch 
College of the City University of New York.

Philip A. Ernst 
Philip Ernst is an Associate Professor with tenure at Rice University. His research interests 
include exact distribution theory, mathematical finance, operations research, optimal stop-
ping, queueing systems, statistical inference for stochastic processes, and stochastic con-
trol. He is an associate editor for Mathematics of Operations Research, an associate editor 
for Stochastics, an associate editor for Statistics and Probability Letters, and an associate 
editor of Journal of Stochastic Analysis. He is also Guest Editor-in-Chief of “In Memoriam: 
Larry Shepp,” a special issue of Stochastic Processes and their Applications to appear in 
Spring 2022.

Ernst’s research is funded by the U.S. Office of Naval Research (ONR), U.S. Army Research 
Office (ARO), and the National Science Foundation (NSF). He is the recipient of numerous 
international and national research awards. In 2020, Dr. Ernst received the (inaugural) 
INFORMS Donald P. Gaver, Jr. Early Career Award for Excellence in Operations Research. 
In 2018, Dr. Ernst was honored with the Tweedie New Researcher Award from the Institute 
of Mathematical Statistics, widely considered the highest honor for excellence in research 
for an early-career mathematical statistician or applied probabilist. In that same year, Dr. 
Ernst also received the prestigious Army Research (ARO) Young Investigator Award.

Dr. Ernst is also strongly committed to teaching and mentoring. In 2021, he was the 
recipient of the George R. Brown Award for Superior Teaching at Rice University. In 2017, 
Dr. Ernst was the recipient of the Nicolas Salgo Distinguished Teacher Award, the oldest 
teaching award given to faculty members at Rice University. In 2016, Dr. Ernst was the 
recipient of the Sophia Meyer Farb Prize for Teaching, given annually to one Rice assistant 
professor for excellence in teaching. In 2015, he received the Graduate Student Associa-
tion Mentoring Award, given annually to two faculty members.

Dr. Ernst earned his Ph.D. in statistics from the Wharton School of the University of Penn-
sylvania in 2014.
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in 2014, Mr. Javid worked with various startup companies in the Bay Area, California, one of 
which went public in 2017. Mr. Javid was the silver medal winner of the National Mathematics 
Olympiad in Iran in both 1998 and 1999.

Mr. Javid received his M.S. in Financial Mathematics from Stanford University, Stanford, CA 
in 2010, his M.Sc. in electrical engineering from the University of Toronto, Canada in 2006 
and his B.Sc. in electrical engineering from Sharif University of Technology, Iran in 2004.
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Paul Sargen is a Partner and the Chief Risk Officer at Hudson Bay Capital Management LP 
responsible for supporting Sander Gerber, Chief Investment Officer, in overseeing the risk 
management function across the portfolio. Prior to joining Hudson Bay, Mr. Sargen was a 
Director in the Quantitative Trading Group at Aristeia Capital, LLC, a convertible arbitrage, 
distressed debt, special situation/event-driven hedge fund manager.  At Aristeia, Mr. Sargen 
was involved in all aspects of risk management, from risk identification and systems devel-
opment to hedge selection and trading. His experience includes valuing and evaluating a 
variety of investment products covering most major asset classes, such as convertibles, 
bank capital, equity options, corporate bonds and preferreds, sovereign debt, CDS, interest 
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The Gerber Statistic: A Robust 
Co-Movement Measure for Portfolio 
Optimization

Sander Gerber, Harry M. Markowitz, Philip A. Ernst,  
Yinsen Miao, Babak Javid, and Paul Sargen

KEY FINDINGS

n We introduce the Gerber statistic, a robust co-movement measure for covariance matrix 
estimation for the purpose of portfolio construction.

n The Gerber statistic is designed to recognize co-movement between series when the 
movements are substantial and to be insensitive to small co-movements that may be 
due to noise alone.

n Using a well-diversified portfolio of nine assets over a 30-year period (January 1990–
December 2020), we empirically find that, for almost all investment scenarios consid-
ered, the Gerber statistic’s returns dominate those achieved by both historical covariance 
and by the shrinkage method of Ledoit and Wolf.

ABSTRACT

The purpose of this article is to introduce the Gerber statistic, a robust co-movement mea-
sure for covariance matrix estimation for the purpose of portfolio construction. The Gerber 
statistic extends Kendall’s Tau by counting the proportion of simultaneous co-movements 
in series when their amplitudes exceed data-dependent thresholds. Because the statistic 
is not affected by extremely large or extremely small movements, it is especially well suited 
for financial time series, which often exhibit extreme movements and a great amount of 
noise. Operating within the mean–variance portfolio optimization framework of Markowitz, we 
consider the performance of the Gerber statistic against two other commonly used methods 
for estimating the covariance matrix of stock returns: the sample covariance matrix (also 
called the historical covariance matrix) and shrinkage of the sample covariance matrix given 
by Ledoit and Wolf. Using a well-diversified portfolio of nine assets over a 30-year period 
(January 1990–December 2020), we find, empirically, that for almost all investment sce-
narios considered, the Gerber statistic’s returns dominate those achieved by both historical 
covariance and by the shrinkage method of Ledoit and Wolf.

Portfolio construction (Markowitz 1952, 1959) relies heavily on the availability of 
the matrix of covariances between securities’ returns. Often the sample cova-
riance matrix is used as an estimate for the actual covariance matrix (Jobson 

and Korkie 1980). As early as Sharpe (1963), however, various models have been 
used to ease the computational burden and to improve the statistical properties of 
covariance matrix estimates. Nevertheless, a central problem still exists with many 
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covariance matrix estimators: they employ product-moment–based estimates that are 
inherently not robust. This is particularly troublesome if the underlying distribution of 
returns contains extreme measurements or outliers. Robust estimators, based on 
the pioneering work of Tukey (1960), Hampel (1968, 1974), and Huber (1977), have 
largely overcome this problem. Shevlyakov and Smirnov (2011) provide a thorough 
examination of modern robust methods for computing correlations.

However, financial time series have characteristics that make even standard 
robust techniques unsuitable. Financial time series are particularly noisy, and this 
noise can be easily misinterpreted as information. One consequence, for example, 
is that correlation matrix estimates (even those constructed with robust techniques) 
often have non-zero entries corresponding to series that in fact have no meaningful 
correlation. On the other hand, correlation estimates can also be distorted if the 
series contains extremely large (either positive or negative) observations.

The key purpose of this article is to introduce the Gerber statistic (GS),1 a robust 
co-movement measure that ignores fluctuations below a certain threshold and simul-
taneously limits the effects of extreme movements. The GS is designed to recognize 
co-movement between series when the movements are substantial and to be insen-
sitive to small co-movements that may be due to noise alone. The GS is similar to 
Kendall’s Tau (Kendall 1938) in that it also measures co-movement between two 
groups of data as a function of the difference between the number of concordant 
and discordant pairs (see the following section and the Appendix). However, the GS 
generalizes Kendall’s Tau because it includes thresholds such that only co-movements 
that exceed thresholds are recognized as being either concordant or discordant.

In the present article, we confine our analysis to the mean–variance optimization 
(MVO) framework of Markowitz (1952, 1959). Within the mean–variance paradigm, 
we compare the performance of the GS with two commonly employed covariance 
matrix estimators of stock returns: (1) the sample covariance matrix (also referred 
to as the historical covariance (HC) matrix, or simply historical covariance) and (2) the 
shrinkage estimator of Ledoit and Wolf (2004), which shrinks the sample covariance 
matrix toward a structural estimator. It is well known that the sample covariance matrix 
lacks robustness and is highly susceptible to outliers (Jobson and Korkie 1980).  
In sharp contrast to the shrinkage estimator of Ledoit and Wolf (2004), the GS does 
not rely on the sample covariance matrix as input.

The remainder of this article is organized as follows. We first provide an intro-
duction to the GS. We then introduce the dataset and the backtesting framework 
employed to compare the empirical performance of HC, shrinkage estimation, and 
the GS. The core empirical analysis is then presented. Operating within Markowitz’s 
mean–variance portfolio optimization framework, we find that the GS’s returns, in 
almost all investment scenarios considered, dominate those from both HC and from 
shrinkage estimation. The Appendix contains the necessary technical aspects for 
this article, which follow from the next section.

THE GERBER STATISTIC

The purpose of this section (and its continuation in the Appendix) is to introduce 
the GS and the corresponding Gerber correlation matrix, which is then converted to a 

1 The first preprint on the Gerber statistic (Gerber, Markowitz, and Pujara 2015) was posted on 
SSRN in 2015, but it was removed owing to some errors in calculation. It is currently available via www.
stat.rice.edu/~pe6/Gerber2015.pdf. The present article constitutes the final draft of this preprint. All 
figures and results in this work are fully reproducible via the resources provided on the GitHub page 
https://github.com/yinsenm/gerber.
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Gerber covariance matrix that is inputted into the mean–variance portfolio optimizer. 
We begin with the necessary notation for the GS’s formulation.

 Notation

We consider k = 1, …, K securities and t = 1, …, T time periods. Let rtk be the 
return of security k at time t. For each pair (i, j) of assets for each time t, we convert 
the return observation of pair (rti, rtj) to a joint observation mij(t) given by the assign-
ment mechanism:

=

+ ≥ + ≥
+ ≤ - ≤
- ≥ + ≤
- ≤ - ≥











































m t

r H+ ≥r H+ ≥ + ≥r H+ ≥r H+ ≥r H+ ≥ +r H+
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r H- ≥r H- ≥ + ≤r H+ ≤r H+ ≤r H+ ≤ -r H-
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ijm tijm t
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 (1)

where Hk is a threshold for security k and is calculated as

H csH csH cK kH cK kH c= ,H c= ,H cs= ,sH csH c= ,H csH cK k= ,K kH cK kH c= ,H cK kH csK ks= ,sK ksH csH cK kH csH c= ,H csH cK kH csH c  (2)

where c is some fraction (typically set to 1/2, but may also be increased to 7/10 or 
9/10) and sk is the sample standard deviation of the return of security k.2  There are 
three key takeaways from the display in Equation 1:

§	The joint observation mij(t) is set to +1 if the series i and j simultaneously 
pierce their thresholds in the same direction at time t.

§	The joint observation mij(t) is set to -1 if the series i and j simultaneously 
pierce their thresholds in opposite directions at time t.

§	The joint observation mij(t) is set to 0 if at least one of the series does not 
pierce its threshold at time t.

We now consider the following statistic for a pair of assets

∑
∑

= =

=

g
m t

m t
ij

ijm tijm t
t

T

ijm tijm t
t

T

( )m t( )m t

( )m t( )m t
.1

1

 (3)

Because the statistic in Equation 3 relies on counts of the number of simulta-
neous piercings of thresholds, and not on the extent to which the thresholds are 
pierced, it is insensitive to extreme movements that distort product-moment–based 
measures. At the same time, because a series must exceed its threshold before it 
becomes a candidate to be counted (i.e., it is given a value of mij that is either +1 
or -1), the statistic in Equation 3 is also insensitive to small movements that may 
simply be noise.

A fundamental tenet of modern portfolio theory is that the covariance matrix of 
securities’ returns must be positive semidefi nite. However, when working with real 
data, we found that the covariance matrix corresponding to the statistic in Equation 3 
was often not positive semidefi nite. This led us to develop an alternative form of the 

2 More robust measures than standard deviation could, of course, be used for the threshold com-
putation, but this is beyond the scope of the present work.
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statistic in Equation 3 that gives rise to a positive semidefinite covariance matrix. 
We call this alternative form, appearing in Equation A-3 in the Appendix, the GS. The 
GS closely resembles the statistic displayed in Equation 3. The Appendix contains a 
more detailed technical discussion of the GS’s formulation.

In concordance with Pearson’s correlation coefficient (and Kendall’s Tau coeffi-
cient), the value of the GS is also always contained in the interval [-1, 1]. However, 
there are key conceptual differences between the GS and the Pearson correlation 
coefficient:

§	The Pearson correlation coefficient inputs the sample covariance of assets 
i and j and the sample standard deviation of assets i and j (and therefore 
the sample means of assets i and j). By definition, the sample covariance, 
the sample mean, and the sample standard deviation are calculated over 
all data points, regardless of whether the points correspond to meaningful 
co-movement or to pure noise. This causes the Pearson correlation to be 
highly sensitive to small co-movements that may be due to noise alone. In 
contrast, the numerator of the GS in Equation A-3 only includes the subset  
of the dataset containing the points corresponding to meaningful co-movement; 
that is, the GS strips away noisy data. We see this to be the key reason why 
the GS is a more robust co-movement measure than the standard Pearson 
correlation.

§	Unlike the Pearson correlation coefficient, the GS’s formulation need not 
require any estimates of moments. Indeed, we could achieve an entirely 
moment-free framework for the GS by replacing sk in Equation 2 with a more 
robust measure of standard deviation (as previously noted in footnote 2).  
We shall explore candidates for this measure in future work.

EMPIRICAL STUDY

In this section, we commence the empirical study of the performance of the GS in 
comparison to two commonly used methods of covariance estimation for the purpose 
of portfolio construction: HC and the shrinkage estimator of Ledoit and Wolf (2004).

Dataset

The dataset we consider is a well-diversified collection of nine assets over the 
time period January 1988 to December 2020:

 1. S&P 500 index (US large-cap stocks; ticker SPX)
 2. Russell 2000 index (US small-cap stocks; ticker RTY)
 3. MSCI EAFE index (captures large- and mid-cap equities across 21 developed 

countries excluding the United States and Canada; ticker MXEA)
 4. MSCI Emerging Markets index (captures large- and mid-cap equities across 

27 emerging markets; ticker MXEF)
 5. Bloomberg Barclays US Aggregate Bond index (includes Treasuries and  

government-related and corporate securities; ticker LBUSTRUU)
 6. Bloomberg Barclays US Corporate High Yield Bond index (ticker LF98TRUU)
 7. Real estate FTSE NAREIT all equity REITS index (ticker FNERTR)
 8. Gold (ticker XAU)
 9. S&P GSCI Goldman Sachs Commodity index (ticker SPGSCI)
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The monthly total returns (TR) for these nine 
assets for the period from January 1988 to Decem-
ber 2020 were obtained from a Bloomberg terminal. 
Each asset contains 396 observations over this time 
period. The TR indexes provided by Bloomberg track 
capital gains and account for cash distributions such 
as dividends or interest through asset reinvesting. As 
we shall detail in the sequel, our backtesting proce-
dure for MVO requires two years of monthly returns to 
initialize the fi rst portfolio. The descriptive statistics 
for the monthly total returns of the nine-asset portfolio 
in Exhibit 1 are therefore calculated from the period 
January 1990 to December 2020 rather than from the 
period January 1988 to December 2020.

Becau se the nine assets are well diversifi ed, we 
do not expect to observe a strong pairwise correlation 
structure between the assets. This is confi rmed by 
Exhibit 2, which displays a correlation matrix of the 
total return series from January 1990 to December 
2020 for the nine assets.

Compe  ting Methods

As pr eviously discussed, the two competing methods to the GS we shall consider 
are the HC matrix and the SM of Ledoit and Wolf (2004). The HC matrix is computed 
from the sample correlation matrix calculated via the standard Pearson correlation 
(Jobson and Korkie 1980). The shrinkage estimator introduced by Ledoit and Wolf 
(2004) is a convex combination of a structure covariance matrix and the sample HC 
matrix; the sample covariance matrix is shrunk toward a targeted structured estimator.

We proceed to highlight some critical conceptual differences between the GS and 
the SM of Ledoit and Wolf (2004):

 1. The SM directly inputs the sample covariance matrix. In contrast, the GS 
does not rely upon the sample covariance matrix as input. In lieu, the GS 
computes concordant and discordant pair counts. The GS thereby offers a 
natural extension of Kendall’s Tau for use in portfolio management.

 2. The GS’s framework for considering concordant and discordant pairs of assets 
in one dataset (in the present article, the dataset of historical returns) can be 
naturally extended to working with multiple datasets. For example, suppose a 
portfolio manager wished to consider three datasets simultaneously: histori-
cal returns, trading volume, and implied volatility. Furthermore, suppose that 
this portfolio manager wished to deem two assets A and B to be concordant 
if the return for both assets is higher than x% at the same time that the trad-
ing volume increases by more than y% and the implied volatility increases 
by more than z%, where x, y, and z are any (fi nite) real numbers greater than 
zero. The GS provides a natural framework for designing this rule (as well as 
more sophisticated rule-based systems) and computing the corresponding 
GSs. In contrast, moment-based methods such as shrinkage and HC do not 
provide the same natural framework for considering such rule-based systems 
for determining co-movement.

As for similarities between the GS and the SM of Ledoit and Wolf (2004), it should 
be noted that the Ledoit and Wolf shrinkage constant controls the degree to which 

EXH IBIT 1
Descriptive Statistics for the Nine-Asset Portfolio

NOTES: The descriptive statistics are computed using monthly 
data from January 1990 to December 2020. TR denotes the 
total return data, which accounts for asset appreciation from 
both capital gains and reinvesting of dividends.

Index 

S&P 500 TR
Russel 2000 TR
MSCI EAFE TR
MSCI Emerging Market TR
US Agg Bond TR
US Corp High-Yield Bond TR
REITS TR
Gold TR
S&P GSCI TR

Arithmetic
Return (%)

11.90
11.74

6.60
12.13

6.11
9.35

11.97
6.04
5.27

Geometric
Return (%)

10.47
10.14

4.77
7.61
6.00
8.36

10.37
5.03
2.36

Annualized
SD (%)

14.63
19.36
16.89
22.31

3.57
8.74

18.32
15.26
21.48
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the sample covariance matrix is shrunk. The analog for the GS is the value c given in 
Equation 2; we recall that the value of c determines the magnitude of the threshold Hk.

Optim ization Procedure and Portfolio Backtesting

The p ortfolio optimization framework we shall consider is that of MVO (Markowitz 
1952, 1959) with a transaction fee of 10 bps, or 0.1% of traded volume. The follow-
ing backtesting procedure is employed to benchmark performance among different 
covariance estimators for portfolio optimization.

§	Beginning January 1990, at the beginning of each month, the monthly returns 
of the current list of assets from a lookback window of 24 months are used 
to estimate the expected return vector and the covariance matrix, each of 
which is then inputted into the Markowitz MVO procedure.

§	All portfolios are rebalanced on a monthly basis. We repeat this rebalancing 
process by moving the in-sample period one month forward and comput-
ing the updated effi cient portfolio for the next month. This rolling-window 
investing procedure offers the advantage of being more adaptive to market 
structural changes and helps to ameliorate data mining bias. Because two 
years’ worth of monthly returns are required to initialize the fi rst portfolio, our 
performance evaluation ranges from January 1990 to December 2020.

EXHIBIT 2
Heat Map of the Correlation Matrix (given the total return series from January 1990 to December 2020) 
for the Nine Assets
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EMPIR ICAL RESULTS

We no w present the article’s key empirical results. 
Working with the dataset introduced in the “Dataset” 
section and employing the transaction costs and back-
testing algorithm given in the previous section, we 
consider the performance of the GS in comparison to 
HC and to the SM of Ledoit and Wolf (2004) for three 
different values of the Gerber threshold c given in 
Equation 2: c = 0.5, c = 0.7, and c = 0.9.

Gerbe r Statistic with c = 0.5

We fi rst study the GS with a threshold value of 
c = 0.5. We report four key fi ndings:

1.  For all risk target levels, the GS offers a more 
favorable risk–return profi le than HC. With the 
exception of the ultra-conservative risk target 
level of 3%, the GS offers a more favorable risk–
return profi le than SM (Exhibit 3).

2.  For all risk targets, the GS yields higher cumula-
tive returns than HC. With the exception of the 
very conservative risk target level of 3%, the 
GS yields higher cumulative returns than SM 
(Exhibits 4 and 5).

3.  With values of portfolio turnover, skewness, and 
kurtosis similar to both the HC and SM portfo-

lios, the GS posts higher geometric returns and higher Sharpe ratios than 
HC across all risk target levels (Exhibit 6). With the exception of the very 
conservative risk target level of 3% (Exhibit 6), the GS yields higher geometric 
returns and higher Sharpe ratios than SM across all other risk target levels.

EXHIBIT 3
Realized Performance in Terms of Annualized Return 
and Annualized Volatility of Portfolios (ex post efficient 
frontiers) with Different Risk Target Levels from 3% 
to 15%, with an Increment of 2%, given the Gerber 
Threshold c = 0.5 

NOTE: The blue frontier illustrates the ex post performance of 
HC-based portfolios, the brown frontier presents the ex post 
performance of SM-based portfolios, and the red frontier corre-
sponds to the ex post performance of GS-based portfolios.
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EXHIBIT 4
Cumulative Returns in Percentage (from 1990 to 2020) for HC-Based Portfolios, SM-Based Portfolios, 
and GS-Based Portfolios at Five Different Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), 
given the Gerber Threshold c = 0.5 

NOTE: The calculation assumes that $100,000 is invested in January 1990 and is left to grow according to portfolio weights 
determined by each covariance method and risk target level until December 2020.
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 4. For some risk target levels, the average annualized geometric return of GS 
is more than 30 bps higher than that of SM and more than 75 bps higher 
than that of HC. The latter result is unsurprising given the limitations of HC 
(Jobson and Korkie 1980; Ledoit and Wolf 2004), and so we instead focus 
on the advantages of GS over SM. For the 9% risk target level, the average 
annualized geometric return of GS is approximately 32 bps higher than that 
of SM, and its cumulative return is 10.16% higher than that for SM over the 
1990–2020 period (Exhibit 6). For the 15% risk target level, the average 
annualized geometric return of GS is approximately 32 bps higher than that 
of SM, and its cumulative return is 10.32% higher than that of SM over the 
1990–2020 period (Exhibit 6).

Gerber     Statistic with c = 0.7

We proceed to study the GS with a value of c = 0.7. We report four key fi ndings:

 1. For all risk target levels, the GS offers a more favorable risk–return profi le 
than both HC and SM (Exhibit 7).

 2. For all risk target levels, the GS offers superior cumulative returns to both 
HC and SM (Exhibits 8 and 9).

 3. For all risk target levels, the GS gives higher geometric returns and Sharpe 
ratios compared to both HC and SM, and it has similar values of portfolio 
turnover, skewness, and kurtosis to HC and SM (Exhibits 6 and 10).

 4. For some risk target levels, the average annualized geometric return of GS 
is more than 40 bps higher than that of SM and is more than 90 bps higher 
than that of HC. The latter fi nding is unsurprising given the limitations of HC 
(Jobson and Korkie 1980; Ledoit and Wolf 2004), and so we instead focus 
on the advantages of GS over SM. For the 12% risk target level, the average 
annualized geometric return of GS is approximately 41 bps higher than that 
of SM, and its cumulative return is 13.12% higher than that of SM over the 
1990–2020 period (Exhibits 6 and 10). For the 15% risk target level, the 
average annualized geometric return of GS is approximately 35 bps higher 
than that of SM, and its cumulative return is 11.18% higher than that of SM 
over the 1990–2020 period (Exhibits 6 and 10).

EXHIBIT 5
Account Dollar Value in December 2020 for HC-Based Portfolios, SM-Based Portfolios, and GS-Based Portfolios at 
Five Different Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), given the Gerber Threshold c = 0.5

NOTE: The calculation assumes that $100,000 is invested in January 1990 and is left to grow according to portfolio weights 
determined by each covariance method and risk target level until December 2020.

HC

$561,276.27
$1,020,099.74
$1,356,911.18
$1,364,148.39
$1,551,338.93

Method

Ultra-Conservative (3%)
Conservative (6%)
Moderate (9%)
Aggressive (12%)
Ultra-Aggressive (15%)

SM

$570,161.82
$1,058,096.16
$1,497,204.43
$1,584,491.30
$1,622,590.70

GS

$564,972.97
$1,138,042.25
$1,639,089.77
$1,695,255.50
$1,779,756.04
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EXHIBIT 7
Realized Performance in Terms of Annualized Return and Annualized Volatility of Portfolios (ex post efficient frontiers) 
with Different Risk Target Levels from 3% to 15%, with an Increment of 2%, given the Gerber Threshold c = 0.7 

NOT E: The blue frontier illustrates the ex post performance of HC-based portfolios, the brown frontier presents the ex post 
performance of SM-based portfolios, and the red frontier corresponds to the ex post performance of the GS-based portfolios.
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EXHIBIT 8
Cumulative Returns in Percentage (from 1990 to 2020) for HC-Based Portfolios, SM-Based Portfolios, 
and GS-Based Portfolios at Five Different Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), 
given the Gerber Threshold c = 0.7

NOT E: The calculation assumes that $100,000 is invested in January 1990 and is left to grow according to portfolio weights deter-
mined by each covariance method and risk target level until December 2020.
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EXHIBIT 9
Dollar Value in December 2020 for HC-Based Portfolios, SM-Based Portfolios, and GS-Based Portfolios under Five 
Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), with a Gerber Threshold c = 0.7

NOTE: The calculation assumes that $100,000 is invested in January 1990 and is left to grow until December 2020.

HC

$561,276.27
$1,020,099.74
$1,356,911.18
$1,364,148.39
$1,551,338.93

Method

Ultra-Conservative (3%)
Conservative (6%)
Moderate (9%)
Aggressive (12%)
Ultra-Aggressive (15%)

SM

$570,161.82
$1,058,096.16
$1,497,204.43
$1,584,491.30
$1,622,590.70

GS

$599,043.19
$1,151,575.55
$1,617,126.27
$1,779,267.42
$1,792,846.87
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Gerber S  tatistic with c = 0.9

We proceed to study the GS with a value of c = 0.9. We report four key fi ndings:

 1. For all risk target levels, the GS offers a more favorable risk–return profi le 
than both HC and SM (Exhibit 11).

 2. For all risk target levels, the GS offers superior cumulative returns to both 
HC and SM (Exhibits 12 and 13).

 3. For all risk target levels, the GS posts higher geometric returns and Sharpe 
ratios compared to both SM and HC, and it has similar values of portfolio 
turnover, skewness, and kurtosis (Exhibits 6 and 10).

EXHIBIT 11
Realized Performance in Terms of Annualized Return and Annualized Volatility of Portfolios (ex post efficient frontiers) 
with Different Risk Target Levels from 3% to 15%, with an Increment of 2%, given the Gerber Threshold c = 0.9

NOT E: The blue frontier illustrates the ex post performance of HC-based portfolios, the brown frontier presents the ex post 
performance of SM-based portfolios, and the red frontier corresponds to the ex post performance of the GS-based portfolios.

EXHIBIT 12
Cumulative Returns in Percentage (from 1990 to 2020) for HC-Based Portfolios, SM-Based Portfolios, 
and GS-Based Portfolios at Five Different Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), 
given the Gerber Threshold c = 0.9 

NOTE: The calculation assumes that $100,000 is invested in January 1990 and is left to grow according to portfolio weights 
determined by each covariance method and risk target level until December 2020.
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 4. For the 3% and 6% risk target levels, the average annualized geometric return 
of GS is, respectively, approximately 32 and 35 bps higher than those of SM. 
The cumulative returns are, respectively, 12.11% and 11.67% higher than 
those of SM over the 1990–2020 period (Exhibits 6 and 10). We also note 
that for the 6% risk target level, the average annualized geometric return of 
GS is more than 48 bps higher than that of HC.

   CONCLUSION

 This article has introduced a co-movement measure called the GS. The GS is 
well suited for assessing co-movement between fi nancial time series because it is 
insensitive to extremely large co-movements that distort product-moment–based 
measures and to small movements that are likely to be noise. We have studied 
the performance of the GS within the mean–variance portfolio optimization frame-
work of Markowitz (1952, 1959). In every investment scenario considered, the GS’s 
performance is superior to that of HC. In almost every3 investment scenario con-
sidered, the GS dominates the shrinkage estimator on the key metrics of interest 
to any investor: cumulative return, average geometric return, and Sharpe ratio. An 
additional advantage of the GS lies in the fact that, unlike the shrinkage method, it 
does not rely upon the sample covariance matrix as input. Finally, the GS is easy to 
compute and is straightforward to implement in any MVO software. Our hope is that 
it will become a welcome alternative to both HC and to the shrinkage estimator of 
Ledoit and Wolf (2004).

APPENDIX

 The fi rst subsection of this Appendix documents the formulation of the Gerber statis-
tic in Equation A-3. The second subsection provides a simple example to illustrate how 
the Gerber statistic is calculated.

3 We have considered fi ve risk targets for Gerber thresholds c = 0.5, c = 0.7, and c = 0.9. This 
amounts to 15 investment scenarios in total. The shrinkage estimator of Ledoit and Wolf (2004) only 
dominates the Gerber statistic in one of these 15 investment scenarios, corresponding to c = 0.5 and 
a very conservative risk target level of 3%.

EXHIBIT 13
Account Dollar Value in December 2020 for HC-Based Portfolios, SM-Based Portfolios, and GS-Based Portfolios 
at Five Different Annual Risk Target Levels (3%, 6%, 9%, 12%, and 15%), given the Gerber Threshold c = 0.9

NOTE: The calculation assumes that $100,000 is invested in January 1990 and is left to grow according to portfolio weights 
determined by each covariance method and risk target level until December 2020.

HC

$561,276.27
$1,020,099.74
$1,356,911.18
$1,364,148.39
$1,551,338.93

Method

Ultra-Conservative (3%)
Conservative (6%)
Moderate (9%)
Aggressive (12%)
Ultra-Aggressive (15%)

SM

$570,161.82
$1,058,096.16
$1,497,204.43
$1,584,491.30
$1,622,590.70

GS

$627,077.52
$1,169,911.24
$1,560,198.02
$1,607,572.21
$1,660,628.94
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 FORMULATION OF GERBER STATISTIC 
IN EQUATION A-3

Recall that in Equation 3 we defi ned a statistic for a 
pair of assets as follows:

∑
∑

= =

=

g
m t

m t
ij

ijm tijm t
t

T

ijm tijm t
t

T

( )m t( )m t

( )m t( )m t
.1

1

Let us refer to a pair for which both components pierce their thresholds while moving 
in the same direction as a concordant pair, and to one whose components pierce their 
thresholds while moving in opposite directions as a discordant pair. Letting nij

c be the 
number of concordant pairs for series i and j, and letting nij

d be the number of discordant 
pairs, Equation 3 is immediately equivalent to

=
+

g
n n-n n-
n n+n n+ij

ijn nijn ncn ncn nij
d

ijn nijn ncn ncn nij
d . (A-1)

Note that the statistic in Equation A-1 is identical to Kendall’s Tau if the threshold 
Hk is set to zero for all k.

We now consider the following graphical representation for the relationship between 
two securities in Exhibit A1. U represents the case in which a security’s return lies above 
the upper threshold (i.e., is up), N represents the case in which a security’s return lies 
between the upper and lower thresholds (i.e., is neutral), and D represents the case in 
which a security’s return lies below the lower threshold (i.e., is down). In Exhibit A1, the 
rows represent categorizations of security i and the columns represent categorizations of 
security j. The boundaries between the rows and the columns are the chosen thresh-
olds. For example, if at time t the return of security i is above the upper threshold, this 
observation lies in the top row. If, at the same time t, the return of security j lies between 
the two thresholds, this observation lies in the middle column. Therefore, this specifi c 
observation would lie in the UN region.

  Over the history t = 1, …, T, there will be observations scattered over the nine regions. 
Let nij

pq be the number of observations for which the returns of securities i and j lie in 
regions p and q, respectively, for p, q ∈ {U, N, D}. With this notation in hand, the following 
is an equivalent expression to the statistic presented in Equation A-1:

=
+ -
+ + +

g
n n+ -n n+ - n n-n n-
n n+ +n n+ + n n+n n+ij

ijn nijn nUUn nUUn nij+ -ij+ -DD+ -DD+ - ijn nijn nUDn nUDn nij
DU

ijn nijn nUUn nUUn nij+ +ij+ +DD+ +DD+ + ijn nijn nUDn nUDn nij
DU . (A-2)

As previously noted, we must alter the denominator in Equation A-1 to obtain a Gerber 
matrix that yields a corresponding covariance matrix in positive semidefi nite form. Our 
alternative choice, which we call the Gerber statistic, is

=
+ -

g
n n+ -n n+ - n n-n n-

T n-T n-ij
ijn nijn nUUn nUUn nij+ -ij+ -DD+ -DD+ - ijn nijn nUDn nUDn nij

DU

ij
NN . (A-3)

The Gerber matrix G is the matrix that contains the Gerber statistic gij in its ith row 
and jth column. In the empirical studies performed, and for all cases of Gerber thresholds 
c considered, we always observe the covariance matrix obtained from the Gerber matrix G
to be positive semidefi nite.

EXHIBIT A1
Graphical Relationship Between Two Securities 
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CA LCULATION OF THE GERBER STATISTIC

We  provide a brief example to illustrate how the Gerber statistic is calculated between 
a given pair of assets. In Exhibit A2, we compute 24 pairwise monthly returns between 
the assets S&P 500 (SPX) and Gold (XAU) for the period from January 2019 to December 
2020. Recalling that the threshold of Hk as defi ned in Equation 2 may be altered, we 
consider three different values of c: c = 0.5, c = 0.7, and c = 0.9.

Th e key intuition for our choice of the Gerber statistic’s denominator in Equation A-3 
comes from the following observation: as c becomes larger, more data points are included 
in the region NN. This leads to the statistic becoming more robust and less sensitive to 
noise in the data. We refer to this artifact of the Gerber statistic as stripping noise from 
the data.

We now calculate the Gerber statistic by counting the points falling into each region. 
The results for the three cases c = 0.5, c = 0.7, and c = 0.9 are given below. All result in 
Gerber statistics that differ from the standard Pearson correlation coeffi cient of 0.22.

 1. In the case c = 0.5 (Exhibit A2, Panel A), the counts for nine regions 
are = = = = = = = =n n= =n n= = n n= =n n= = n n= =n n= = n n= =n n= =ijn nijn nUDn nUDn nij

UN
ijn nijn nUUn nUUn nij

ND
ijn nijn nNNn nNNn nij

NU
ijn nijn nDDn nDDn nij

DN0,n n0,n n= =n n= =0,= =n n= = 4, 7,n n7,n n= =n n= =7,= =n n= = 3, 3,n n3,n n= =n n= =3,= =n n= = 3, 1,n n1,n n= =n n= =1,= =n n= = 1,and nij
DU 2= . 

Employing the formula or the Gerber statistic in Equation A-3, we fi nd that

=
+ -

-
= ≈= ≈gij

7 1 0 2+ -1 0 2+ - -1 0 2-
24 3

2
7

0.286.

 2. In the case c = 0.7 (Exhibit A2, Panel B), the counts for nine regions are 
= = = = = = = =n n= =n n= = n n= =n n= = n n= =n n= = n n= =n n= =ijn nijn nUDn nUDn nij

UN
ijn nijn nUUn nUUn nij

ND
ijn nijn nNNn nNNn nij

NU
ijn nijn nDDn nDDn nij

DN0,n n0,n n= =n n= =0,= =n n= = 5, 4,n n4,n n= =n n= =4,= =n n= = 3, 6,n n6,n n= =n n= =6,= =n n= = 2, 0,n n0,n n= =n n= =0,= =n n= = 3, and nij
DU 1= . 

Employing the formula for the Gerber statistic in Equation A-3, we fi nd that

=
+ -

-
= ≈= ≈gij

4 0+ -4 0+ - 0 1-0 1-
24 6

1
6

0.166.

 3. In the case c = 0.9 (Exhibit A2, Panel C), the counts for nine regions are 
= = = =n n= =n n= = n n= =n n= = n n= =n n= = n n= =n n= =ijn nijn nUDn nUDn nij

UN
ijn nijn nUUn nUUn nij

ND
ijn nijn nNNn nNNn nij

NU
ij
DD

ij
DN0,n n0,n n= =n n= =0,= =n n= = 3, 3,n n3,n n= =n n= =3,= =n n= = 3, 11n n11n n= =n n= =11= =n n= =, 2= =, 2= =n n, 2n n= =n n= =, 2= =n n= =ij, 2ij

NU, 2NU , 0n n, 0n n= =n n= =, 0= =n n= =ij, 0ijn nijn n, 0n nijn nDD, 0DDn nDDn n, 0n nDDn n, 1= =, 1= =n n, 1n n= =n n= =, 1= =n n= =ij, 1ij
DN, 1DN , and nij

DU 1= . 
Employing the formula for the Gerber statistic in Equation A-3, we fi nd that

=
+ -

-
= ≈= ≈gij

3 0+ -3 0+ - 0 1-0 1-
24 11

2
13

0.154.

EXHIBIT A2
Illustration of Pairwise Returns for Evaluating the Gerber Statistics given c = 0.5, c = 0.7, and c = 0.9

NOTES: Each pairwise monthly return appears as a blue dot. The points in the green zone correspond to the concordant pairs, whereas 
the points falling in the red zone are discordant pairs. The return series of assets i and j are transformed to {-1, 0, 1} using upper and 
lower thresholds calculated by Equation 2.
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