
Avoiding the Downside:
A Practical Review of the Critical Line Algorithm for

Mean-Semivariance Portfolio Optimization

Harry Markowitz1 David Starer2 Harvey Fram3 Sander Gerber4

June 21, 2019

1. Harry Markowitz is President at Harry Markowitz Company, 1010 Turquoise Street. San
Diego, CA 92109.

2. David Starer is Director of Research at Constantia Capital, 17 Hendrickson Rd., Suite 100,
Lawrenceville, NJ 08648.

3. Harvey Fram is Founder and Portfolio Manager at Constantia Capital, 17 Hendrickson Rd.,
Suite 100, Lawrenceville, NJ 08648.

4. Sander Gerber is Managing Partner, Chief Executive Officer, and Chief Investment Officer
at Hudson Bay Capital Management, 777 Third Avenue, 30th Floor, New York, NY 10017.

Abstract

Optimizing a portfolio to reduce exposure to downside risk can be difficult, and usually
involves third or higher order statistical moments of the portfolio’s return distribution.
Mean-semivariance optimization simplifies this problem by using only the first two
moments of the distribution and by penalizing returns below a predetermined reference.
Although this penalty introduces a nonlinearity, mean-semivariance optimization can
be performed easily and efficiently using the critical line algorithm provided that the
covariance matrix is estimated from an historical record of asset returns. In practice,
this proviso is not restrictive. This chapter reviews the theory of the critical line
algorithm and presents sample computer code for applying the algorithm to mean-
variance and mean-semivariance portfolio optimization. It also reviews a method for
finding the efficient mean-semivariance portfolio for any given feasible desired expected
portfolio return.

1 Introduction

Mean-Variance portfolio optimization continues to dominate asset management. In the ma-
jority of cases, it is the best method because, under widely applicable conditions, it maxi-
mizes the investor’s utility [Levy and Markowitz, 1979], it is very easy to implement, and it
is intuitively appealing.

1



Variance, however, is a symmetric measure; meaning that mean-variance optimization
disfavors large positive returns as much as it disfavors large negative returns. Generally
though, investors favor large positive returns, or positively skewed portfolio return distribu-
tions. Therefore, some would argue that mean-variance optimization should be augmented
with methods that penalize only negative returns; i.e., with downside portfolio optimization.
For this purpose, semivariance is a particularly useful measure of downside risk because it
considers returns as risky only if they are below some reference return.

Despite its intuitive appeal, mean-semivariance optimization remains shrouded in mys-
tery. This is primarily because of the difficulties raised by the apparent nonlinearity involved
in the computation of semivariance. For example, Estrada [2008] states, “semivariance op-
timal portfolios cannot be determined without resorting to obscure numerical algorithms.”
In a similar vein, Cumova and Nawrocki [2011] state that mean-semivariance optimization
“requires a laborious iterative process because the cosemivariance matrix is endogenous and
a closed form solution does not exist,” and Cumova and Nawrocki [2014] says in part that
mean-semivariance optimization “has traditionally been challenged by academic researchers
because of the computational complexity of the asymmetric [semicovariance] matrix.”

In reality, the mean-semivariance optimization problem was solved more than sixty years
ago in Markowitz [1959], which showed that if an estimate of the covariance matrix is com-
puted using time series of security returns, the great computational benefit of the Critical
Line Algorithm (CLA) could be exploited to construct mean-semivariance efficient frontiers.
In addition to being extremely fast, the CLA is simple to understand.

With the appropriate definition of new non-negative variables, Markowitz, Todd, Xu,
and Yamane [1992, 1993] showed how the mean-semivariance problem could be formulated
such that a standard quadratic (i.e., mean-variance optimizer) could be used for the mean-
semivariance problem as well.

In this chapter, we provide a review of the CLA for mean-variance and mean-semivariance
optimization, as well as the method of Markowitz, Todd, Xu, and Yamane [1992, 1993] (the
MTXY method) for mean-semivariance optimization. The primary reference for practical
computation of the CLA itself is Chapter 13 of Markowitz and Todd [2000], which provides
a Visual Basic implementation of the algorithm. Similar descriptions, such as those in
Niedermayer and Niedermayer [2009] and Bailey and López de Prado [2013] have provided
didactic and open-source versions in fortran and Python. The contributions of this chapter
are that we provide simple example code for the CLA applied to the mean-semivariance
problem. Previously, only a brief description of the method has been available in Markowitz
[1959] with speed improvements and slightly more complicated extensions in Markowitz,
Todd, Xu, and Yamane [1992, 1993].

Our objective is to provide a step-by-step tutorial of the basic CLA, with the theory of
each step clearly explained and tied to a specific block of computer code. To emphasize
the flexibility of the CLA, we first review the CLA for mean-variance optimization with
reference to a simple Python realization. We then build on the basic CLA and provide R code
for mean-semivariance optimization. Finally, we show how to solve the mean-semivariance
optimization problem with modern convex optimization using the CVXR library [Boyd and
Vandenberghe, 2004]. We emphasize, however, that the computer code presented here is not
intended for production purposes. It is merely illustrative.

One of the many benefits of the CLA is that it is amenable to very rapid computation

2



using an efficient update of a certain matrix inverse when the components of that matrix
change. The details of this update, based on the Sherman-Morrison-Woodbury formula (see,
for example, Hager [1989] and references therein) are provided in Chapter 13 of Markowitz
[1959]. While very important for the purpose of obtaining fast code, the details of this
matrix inverse update tend to hide the simplicity of the CLA. Therefore, in this chapter, we
simply re-invert that matrix whenever needed. In practice, with modern computer hardware
and software, and for typical institutional portfolios, the degradation in performance is not
prohibitive. We also omit details of the initialization of the algorithm for general linear
equality and inequality constraints. This merely requires standard linear programming, and
again the details are available in Markowitz and Todd [2000].

2 The Critical Line Algorithm

The objective in portfolio optimization is to find the fraction xi of investor wealth to be as-
signed to each asset i of n assets so as to maximize investor’s utility subject to all constraints
that the investor faces. In this section, we use the mean-variance approximation to utility
[Levy and Markowitz, 1979]. Let µP be the expected value of the portfolio’s return, let σ2

P

be the variance of the portfolio’s return, and let λE ≥ 0 be a parameter under the investor’s
control that adjusts the trade-off between risk (variance) and return.1 The mean-variance
approximation to utility is

U = λEµP − 1
2
σ2

P. (1)

The efficient frontier is the locus of all points in (σP, µP)-space corresponding to feasible
portfolios that minimize σP for given µP, or maximize µP for given σP. Each point on
the efficient frontier is the optimal pair (σP, µP) for a given choice of λE The Critical Line
Algorithm (CLA) [Markowitz, 1987] is a computationally efficient method for finding the
entire efficient frontier.

To understand the CLA, let xi be the fraction of the investor’s wealth (or weight) invested
in security i, let µi be the expected return of security i, and let σij or σi,j be the covariance
between the returns of securities i and j. Then the expected return and the variance of the
portfolio’s return are

µP =
n∑
i=1

µixi, σ2
P =

n∑
i=1

n∑
j=1

xiσijxj.

Defining the mean vector µ, the portfolio weight vector x, and the covariance matrix C as

µ =


µ1

µ2
...
µn

 , x =


x1
x2
...
xn

 , C =


σ1,1 σ1,2 . . . σ1,n
σ2,1 σ2,2 . . . σ2,n

...
...

σn,1 σn,2 . . . σn,n

 ,
we can also write the portfolio mean and variance as

µP = µ>x, σ2
P = x>Cx.

1We can also interpret λE as a measure of risk tolerance.

3



The mean-variance approximation to utility in equation (1) is then

U = λEµ
>x− 1

2
x>Cx. (2)

Our objective, therefore, is to find the value of the weight vector x that maximizes (or
equivalently that minimizes the negative of) the utility expressed in Equation (2).

The weights xi are subject to constraints. By definition, since xi is the fraction of the
investor’s wealth invested in security i, these weights must sum to 100%. This is the budget
constraint, and it is written as

n∑
i=1

xi = 1.

Using more compact vector notation, with ι being defined as a vector of ones whose dimension
is determined from context, the budget constraint can be written as ι>x = 1. The budget
constraint is an example of one equation that can be included in a more general set of m
linear equality constraints

Ax = b (3)

for given m× n constraint matrix A and m× 1 constraint vector b.
For the moment, consider the Lagrangian for minimizing the negative of the utility in

Equation (2) subject only to the linear equality constraints. That is,

L(x,λ|λE) = 1
2
x>Cx− λEµ

>x︸ ︷︷ ︸
Objective

−λ> (Ax− b).︸ ︷︷ ︸
Constraint

(4)

Here, λ is the m× 1 Lagrange multiplier vector on the linear equality constraints.
In this case, the vector derivatives of the Lagrangian with respect to both x and λ must

be equal to zero vectors. Differentiating the Lagrangian, we obtain

∂L
∂x

= Cx− µλE +A>λ, (5)

∂L
∂λ

= Ax− b. (6)

Setting these equations to zero to find the turning points of the Lagrangian, we get[
C A>

A O

] [
x
λ

]
=

[
µ
0

]
λE +

[
0
b

]
, (7)

where O is an appropriately dimensioned matrix of zeros, and 0 is an appropriately dimen-
sioned vector of zeros.

Besides the linear equality constraints, the weights may also be subject to sets of lin-
ear inequality constraints in the form Fx ≤ g. Inequality constraints can be converted
into equality constraints with the addition of slack or surplus variables together with non-
negativity constraints. Here, we will assume that such conversions have already been made,
and consider only bounds on the minimum and maximum values of xi. Specifically, define
the n × 1 minimum (down) vector d with elements di such that xi ≥ di. For example, the

4



lower bound on a simple long-only portfolio is di = 0 for all i. Also define the n×1 maximum
(up) vector u with elements ui such that xi ≤ ui. In vector form, d ≤ x ≤ u.

We now consider the modifications of Equation (7) that are necessary to take account
of the bounds. For a particular value of λE (i.e., for a point on a particular segment of the
efficient frontier, as we shall discuss later), element i in the first block in Equation (7), or
equivalently element i obtained when the derivative in Equation (5) is set to zero, is

n∑
j=1

σi,jxj +
m∑
j=1

aj,iλj = µiλE for i ∈ IN ⊆ {1, . . . , n}, (8)

where aj,i is the element in row j and column i of A. Importantly, this equation only holds
for security i if the derivative ∂L/∂xi is zero for a value of xi that lies between the upper
bound ui and lower bound di. We refer to the set of i for which these conditions hold as the
IN set. For securities whose derivatives are zero for values outside of these bounds (i.e., for
i /∈ IN), the corresponding elements of Equation (8) do not hold, and must be modified.

First consider all securities i for which ∂L/∂xi would be zero at a value of xi that is
above the upper bound ui. Such securities must be constrained to their upper bounds. We
define UP to be the set of i for securities constrained like this. For these securities, since
we can no longer set the derivatives equal to zero, we can ignore the previous contents of
each equation i ∈ UP in the top block of equation set (7). Instead, we use each equation i
to impose the constraint xi = ui. Similarly, if ∂L/∂xi would be zero for a value of xi that is
below the lower bound di, we must constrain xi to its upper bound. We define DN to be the
set of i for securities constrained like this.

To impose these bounds for all i ∈ UP or i ∈ DN in the top block row of Equation (7):

S1. Replace row i of C with zeros, except in column i. Place a 1 at the intersection of row
i and column i. Let C̄ be the resulting matrix after this replacement.

S2. Replace column i of A (i.e., row i of A>) with zeros. Let Ā be the resulting matrix
after this replacement.

S3. Replace element i of µ with zero. Let µ̄ be the resulting vector after this replacement.

S4. Add a vector k to the right-hand side with entries ki = ui if i ∈ UP, or ki = di if i ∈ DN,
or ki = 0 if i ∈ IN.

We therefore now have
C̄x+ Ā>λ = µ̄λE + k. (9)

This equation takes care of the first block equation in equation set (7) by ensuring that the
derivatives ∂L/∂xi are equal to zero for i ∈ IN, and that the weights xi are equal to their
upper bounds for i ∈ UP or lower bounds for i ∈ DN.

To maintain symmetry in the matrix in equation set (7), we should replace the A in the
second block row with Ā. Equation ` in the second block row is

n∑
j=1

a`,jxj = b` for ` ∈ {1, . . . ,m}. (10)

5



Analogous to ai,j, let āi,j be the element in row i and column j of Ā. From step S2 above,
we know that if security i is bound with i ∈ UP or i ∈ DN, we must have āi,k = 0 for all
k. Therefore, to maintain equality in Equation (3), we need to add back these zeroed-out
quantities with the appropriate bounds contained in k from step S4. Equation (10) therefore
becomes

n∑
j=1

ā`,jxj +
n∑
j=1

a`,jkj = b` for ` ∈ {1, . . . ,m},

which is written in matrix form as

Āx = b−Ak.

Combining these two modifications of Equation (7), we find that we can account for
securities in all sets (IN, UP, or DN) with the equation[

C̄ Ā>

Ā O

] [
x
λ

]
=

[
µ̄
0

]
λE +

[
0
b

]
−
[

0
Ak

]
(11)

where C̄, Ā, µ̄, and k are defined to have entries as follows:

σ̄i,j =


σi,j for (i ∈ IN) and (j ∈ IN),
1 for (i /∈ IN) and (i = j),
0 otherwise.

ki =


ui for i ∈ UP,
di for i ∈ DN,
0 otherwise,

(12)

āi,j =

{
ai,j for j ∈ IN,
0 otherwise.

µ̄i =

{
µi for i ∈ IN,
0 otherwise.

(13)

For brevity, we define

M =

[
C A>

A O

]
and M̄ =

[
C̄ Ā>

Ā O

]
(14)

and the top block row of M as P ,

P =
[
C A>

]
. (15)

The matrix M̄ is guaranteed to be non-singular (see Markowitz [1987]). Therefore, Equa-
tion (11) can be solved to give [

x
λ

]
= α+ βλE, (16)

where

α = M̄−1
[

0
b−Ak

]
and β = M̄−1

[
µ̄
0

]
. (17)

Substituting Equation (17) into Equation (5) gives a closed-form expression for the deriva-
tive of the Lagrangian with respect to the portfolio weights

∂L
∂x

= γ + δλE (18)

6



where
γ = Pα and δ = Pβ − µ. (19)

Equations (16) through (19) provide us with the tools to trace out the efficient frontier.
Equation (16) describes the straight-line segments along the efficient frontier for given IN, UP,
and DN sets. As λE changes, the portfolio x attains discrete critical points (i.e., corner port-
folios) at which the compositions of the IN, UP, and DN sets change. Jacobs, Levy, and Starer
[2012] provide an alternative set of equations that use compression of the dimensions of the
C matrix to include entries only for securities that are IN. In addition, Jacobs, Levy, and
Starer [2012] provide equations for benchmark-sensitive portfolios, beta-constrained portfo-
lios, long-short portfolios, and enhanced active-equity portfolios.

The critical line algorithm is a computationally efficient method tracing out the entire
efficient frontier by finding successive critical values. The algorithm starts with λE effectively
at infinity, at which point maximizing utility amounts to maximizing expected portfolio
return subject to the required constraints. This is a simple linear programming problem
whose solution provides the initial portfolio and the initial contents of the IN, UP, and DN

sets. The algorithm then finds the largest value of λE that is smaller than its current value,
and at which the contents of IN, UP, or DN change. This is the next critical value.

At any critical value, one of four events can take place:

L1. An IN security i can move to UP. From Equation (16), xi = αi + βiλE. Since xi is
attempting to increase its value as λE decreases, we must have βi < 0. Also, since
the security attains its upper bound, its weight must satisfy xi = ui. Combining these
facts, we find that the corner portfolio occurs when λE = λi,IU with

λi,IU =
ui − αi
βi

, βi < 0. (20)

L2. An IN security i can move to DN. From Equation (16), xi = αi + βiλE. Since xi is
attempting to decrease its value as λE decreases, we must have βi > 0. Also, since the
security attains its lower bound, its weight must satisfy xi = di. Combining these facts,
we find that the corner portfolio occurs when λE = λi,ID with

λi,ID =
di − αi
βi

, βi > 0. (21)

L3. An UP security i can move to IN. From Equation (19), ∂L/∂xi = γi + δiλE. In UP,
this derivative is negative. For the security to move IN, the derivative must increase
to zero as λE decreases. Therefore δi < 0 and, since the derivative must attain zero,
γi + δiλE = 0. Combining these facts, we find that the corner portfolio occurs when
λE = λi,UI with

λi,UI = −γi
δi
, δi < 0. (22)

L4. A DN security i can move to IN. From Equation (19), ∂L/∂xi = γi + δiλE. In DN, this
derivatives is positive. For the security to move IN, the derivative must decrease to
zero as λE decreases. Therefore δi > 0 and, since the derivative must attain zero,

7



γi + δiλE = 0. Combining these facts, we find that the corner portfolio occurs when
λE = λi,DI with

λi,DI = −γi
δi
, δi > 0. (23)

The largest of λi,j over all i ∈ {1, . . . , n} and j ∈ {IU, ID, UI, DI} determines the value of λE

at the next corner, or if the algorithm terminates.
A convenient way to find which security is changing and the direction in which it is

changing is to collect the ratios λi,j for all i ∈ {1, . . . , n} and j ∈ {IU, ID, UI, DI} into the
matrix Λ as follows:

Λ =


λ1,IU λ1,ID λ1,UI λ1,DI
λ2,IU λ2,ID λ2,UI λ2,DI

...
...

λn,IU λn,ID λn,UI λn,DI

 . (24)

All entries in Λ that are not defined in Equations (20) through (23) are assigned a value of
−∞. The column of Λ that contains the largest value represents the type of transition made
at the next corner. If the first column contains the maximum value, then the transition is
for a security moving from IN to UP, and so forth. The number of the row of Λ that contains
the largest value represents the index of the security that makes the transition.

We now have all the information necessary to implement the CLA for portfolios with a
constraint set that includes lower and upper bounds. In brief, the algorithm proceeds as
follows:

• Read data or compute where necessary µ, C, A, b, d, and u.

• Use linear programming to find the portfolio x that maximizes expected portfolio
return µ>x subject to the constraints Ax = b and d ≤ x ≤ u, and initialize the IN,
UP, and DN sets.

• Set λE =∞.

• Repeat while λE ≥ 0:

– With the current IN, UP, and DN sets, calculate C̄, Ā, M̄ , µ̄, and k using steps
S1 through S4.

– Calculate α and β using Equation (17), and γ and δ using Equation (19).

– Compute the λi,j ratios using steps L1 through L4 and form the Λ matrix.

– Find the maximum value of Λ. This is the next value of λE; the critical value at
the next corner portfolio.

– Find the row that contains the maximum value of Λ. This is the number of the
security whose state will change at the next corner.

– Find the column that contains the maximum value of Λ. This is an indicator of
the state change that the security will undergo at the next corner portfolio.

– With the state transition thus defined, compute the next IN, UP, and DN sets.

8



– If λE ≥ 0, compute and store the portfolio x at the next corner using the top
block of Equation (16).

We describe the details of the algorithm below.

3 CLA Python Implementation

This section describes a simplified Python implementation of the CLA that maps out the
efficient frontier. This simplified version omits the two-stage simplex algorithm for initializing
the CLA. In addition, it omits the efficient method of updating inverse matrices, instead
relying on the fast and reliable linear algebra module of Python.

Sample Python code is provided in Appendix A. Note, however, that the code is provided
for illustrative purposes only and should not be used for production purposes. In particular,
it contains no error checking that would be essential for production code. Further, the code
is written for readability and correlation with equations presented here. Little attention is
paid to the use of proper idiomatic Python.

For reference, the code is written in blocks with comments that include labels in the form
--Axx--, where xx is a two-digit number. The description below refers to those labels.

The first steps necessary for the CLA are to define functions, read data, and initialize
parameters. Blocks --A01-- and --A02-- define functions that set rows or columns of
matrices or vectors to zero. These are used in the conversion of µ to µ̄ and A to Ā in steps
S2 and S3. Block --A03-- is used to convert C to C̄ in step S1.

Block --A04-- is a function initport that initializes the portfolio for λE effectively infi-
nite. The function computes the maximum return portfolio that satisfies the constraint. In
this case, the only constraints are lower bounds lb and upper bounds ub, and the budget con-
straint. The function uses the method described by Sharpe in https://web.stanford.edu/

~wfsharpe/mia/opt/mia_opt3.htm. A more general initialization procedure is provided in
the VBA code in Chapter 13 of Markowitz and Todd [2000], which performs initialization
using a two-stage simplex algorithm.

Block --A05-- reads the data into the returns array ret, and drops the first column,
which is assumed to contain the date. Block --A06-- sets the initial parameters. Specifically,
it determines the number of securities from the shape of the ret matrix, it initializes the lower
bounds lb and upper bounds lb on the portfolio weights, and it initializes the constraint
matrix A and vector b. In this case, the only constraint is the budget constraint, so the
number of constraints m is one. In this simple code, we are expecting a small number of
securities, so we set the lower weight bound to 10% and the upper weight bound to 50%.
These, obviously, should be modified to match the user’s needs. Block --A06-- sets a
tolerance tol for testing whether or not variables should be considered to be zero. Block
--A07-- computes the sample mean mu and sample covariance C of the return matrix.

The first step of the CLA is performed in Block --A08--, which calls function initport

to find the first portfolio on the efficient frontier. Block --A09-- uses this first portfolio
to create the first state vector s. The state vector contains +1, −1, and 0 in positions
corresponding to securities that are in the UP, DN, and IN sets, respectively. Block --A10--

sets up the P matrix defined in Equation (15) for calculating the derivative in Equation (18).

9

https://web.stanford.edu/~wfsharpe/mia/opt/mia_opt3.htm
https://web.stanford.edu/~wfsharpe/mia/opt/mia_opt3.htm


Finally, in this set of blocks, block --A11-- initializes storage for the quantities calculated
in the CLA.

The CLA loop for stepping from corner portfolio to corner portfolio starts in block
--A12--. Here, we use the variable lam to represent λE. The loop proceeds as long as
λE is positive, or until it is broken when no further corner portfolios are found.

Inside the CLA loop, block --A13-- uses the current state vector s to create the logical
vectors UP, DN, and IN that represent their corresponding sets.

Block --A14-- creates Ā, C̄, and M̄ , represented by variables Abar, Cbar, and Mbar.
This block first creates the vector io containing the indices of the weights that are not IN.
It then creates Abar and Cbar from A and C using io and the functions zerorows and bar.

Block --A15-- computes array k representing the vector k in Equation (12). It then
calculates the right-hand side vectors [0; b−Ak] and [µ̄; 0] used in Equation (17).

Block --A16-- computes the vectors α, β, γ, and δ as defined in Equations (17) and
(19). In this code, we merely call Numpy’s function linalg.solve() to invert M̄ at each
corner portfolio. However, it is more efficient to keep a copy of the inverse M̄−1 and to
update this inverse as the elements of IN, UP, and DN change. Details of efficient updating
methods are provided in Markowitz and Todd [2000].

Blocks --A17-- though --A24-- comprise a group that finds the maximum of λi,IU, λi,ID,
λi,UI, and λi,DI using Equations (20) through (23). To do this, the code places the ratios into
the two-dimensional array L representing Λ in Equation (24).

Specifically, block --A17-- prepares L and sets all of its values to −∞. Blocks --A18--

through --A21-- fill L with computed values of the ratios λi,IU, λi,ID, λi,UI, and λi,DI for all i
for which the ratios are defined. Since Python uses zero-based indexing, the value of λi,j is
contained in array element L[i-1,j-1].

If all entries of L are negative, no more corners exist. Block --A22-- checks for this
condition, and breaks the loop if it is satisfied.

Using the logic described in the paragraph following Equation (24), block --A23-- finds
which row of L contains the maximum value, and thus which security is about to change
state. Block --A24-- finds which column of L contains the maximum value, and thus what
type of state change is about to occur. Block --A25-- sets the value of lam to the largest
value of L. Block --A26-- updates the state vector s.

Block --A27-- computes the portfolio vector x at the corner using Equation (16). It
then computes the expected return and the variance of the corner portfolio.

Finally, block --A28-- saves the portfolio vector, the state vector, the variance, the
return, and the value of lam at the current corner. The loop then repeats with the new value
of lam and the state vector s, or the program terminates if lam ≤ 0.

When the program terminates, the workspace contains the matrix X whose columns are
the portfolio weights at each corner, and the vector LAM that contains the values of λE = lam

at each corner. The workspace also contains extra information in the form of the matrix S

whose columns are the state vector at each corner, the vector R that contains the expected
portfolio return at each corner, and the vector V that contains the portfolio’s variance at
each corner.

Recall from the top block row of Equation (16) that an efficient portfolio is a piece-wise
linear function of the corner portfolios that surround it. Therefore, to find the portfolio
corresponding to any particular value of λE that is not a critical value, one must find the two

10



Security
Year 1 2 3
1937 -0.173 -0.318 -0.319
1938 0.098 0.285 0.076
1939 0.200 -0.047 0.381
1940 0.030 0.104 -0.051
1941 -0.183 -0.171 0.087
1942 0.067 -0.039 0.262
1943 0.300 0.149 0.341
1944 0.103 0.260 0.227
1945 0.216 0.419 0.352
1946 -0.046 -0.078 0.153
1947 -0.071 0.169 -0.099
1948 0.056 -0.035 0.038
1949 0.038 0.133 0.273
1950 0.089 0.732 0.091
1951 0.090 0.021 0.054
1952 0.083 0.131 0.109
1953 0.035 0.006 0.210
1954 0.176 0.908 0.112
µ 0.062 0.146 0.128
σ 0.016 0.091 0.031

Table 1: Returns of Three Securities

critical values λ(a) and λ(b) immediately above and below λE, together with the corresponding
corner portfolios x(a) and x(b). Then, the desired portfolio is simply

x(λE) = x(b) +
λE − λ(b)
λ(a) − λ(b)

(
x(a) − x(b)

)
. (25)

3.1 Example

For our basic example, we will use the data provided on page 195 of Markowitz [1959], and
repeated here in Table 1 for convenience. The table lists returns for three securities for the
18 years 1937 through 1954, together with the securities’ sample mean returns µ and sample
standard deviations σ.

Saving this table in the tab-separated variable file example.tsv and running the Python
script from Appendix A, we obtain the critical values and corner portfolios (rounded to four
decimal places) in Table 2. The table shows that the maximum return portfolio subject to
the constraints is x = [0.1, 0.5, 0.4]. This portfolio assigns the highest allowable weight to
security 2 since this security has the highest sample mean return, and the lowest allowable
weight to security 1 since this security has the lowest sample mean return. The remaining
weight is assigned to security 3.

11



Security
λE 1 2 3
∞ 0.1000 0.5000 0.4000

1.7567 0.1000 0.5000 0.4000
1.2203 0.1000 0.4000 0.5000
0.3142 0.1000 0.4000 0.5000
0.0973 0.3764 0.1236 0.5000
0.0853 0.4644 0.1000 0.4356
0.0770 0.5000 0.1000 0.4000

0 0.5000 0.1000 0.4000

Table 2: Critical Values and Corner Portfolios

The algorithm finds the first corner portfolio at λE = 1.757, and then at successively
lower values until it reaches a minimum at λE = 0.077, which corresponds to the lowest
variance portfolio subject to the constraints. The table extrapolates this final portfolio
down to λE = 0. At this lowest end of the efficient frontier, the algorithm has now assigned
the lowest allowable weight to security 2 and the highest allowable weight to security 1,
which in this case happen to have the highest and lowest standard deviations, respectively.
Again, the remaining weight is assigned to security 3. Figure 1 shows the reversal of the
roles of securities 1 and 2, which plots the weights of the securities as a function of λE.
Figure 2 shows the corresponding efficient frontier in which portfolios between critical values
are obtained using Equation (25).

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0

lambda

w
ei

gh
t

security

1

2

3

Figure 1: Portfolio Weights as a Function of λE

12



0.10

0.11

0.12

0.13

0.14 0.15 0.16 0.17 0.18 0.19

Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

Figure 2: Efficient Frontier

13



4 The CLA for Semivariance

Risk is associated with the variability of return. Most often, the statistic used to measure
variability is variance. Since variance uses the square of the difference from the mean, large
positive deviations from the mean will contribute to an increase in perceived risk. However,
most investors do not consider large positive returns to be risky. But they do consider large
negative returns to be risky. Therefore, a risk measure should ideally be asymmetric and
assign more weight to negative returns. The semivariance is a natural measure that extends
variance so as to introduce this asymmetry.

For a random variable R with mean µ, the semivariance is defined as the expected squared
deviation from the mean when that deviation is negative. That is

s2 = E
[{

(R− µ)−
}2]

,

where the notation (·)− denotes the negative part of the argument in parenthesis. That is,
for any x,

(x)− =

{
x if x < 0,
0 otherwise.

In this chapter, we will use a slightly generalized version of semivariance that we define
relative to a reference return rather than relative to the mean. The traditional semivariance
is then simply a special case.

With return measurements rt for t = 1, . . . , T, we define the population semivariance
with respect to the reference return % as

s2% =
1

T

T∑
t=1

{
(rt − %)−

}2
(26)

Advantageously with semivariance, only returns below the reference return contribute to the
measure of risk. Returns above the reference point are given no weight. Two particular
choices of reference point interest us. If we choose the reference point to be the mean, then
s2µ ≡ s2 is the same as the standard definition of semivariance. If we choose the reference
point to be zero, then s20 is the squared downside deviation; the word downside referring to
any negative return.

For a symmetrical return distribution, the variance is twice the semivariance; σ2 = 2s2.
For a left-skewed distribution, σ2 < 2s2, and the opposite is true for a right-skewed distri-
bution. Therefore, the ratio σ2/(2s2) is a useful indirect measure of skewness. For portfolios
with the same expected return and variance, optimization based on minimizing s2 yields the
portfolio with the smallest skewness to the left.

As noted in Markowitz [1959, page 193], “Several conflicting considerations influence the
choice of [variance] or [semivariance] as the measure of variability in a portfolio analysis.
These considerations include cost, convenience, familiarity, and the desirability of the port-
folios produced by the analysis. ... Analyses based on [semivariance] tend to produce better
portfolios than those based on [variance]. Variance considers extremely high and extremely
low returns equally undesirable. An analysis based on [variance] seeks to eliminate both
extremes. An analysis based on s, on the other hand, concentrates on reducing losses.”

14



Importantly, with regard to familiarity, Markowitz [1959] states that “[F]amiliarity is a tran-
sient thing: use can make [semivariance] as familiar as [variance].” In this section, we hope
to aid the process of familiarization.

It is straightforward to extend population variance to population semivariance. For a
population of T realizations of the returns of n securities, we know that the population
covariance between securities i and j is

σij =
1

T

T∑
t=1

(rt,i − µi)(rt,j − µj) (27)

where rt,k is the return of security k over time period t, and µk is the average return of
security k. If R is the T × n returns matrix with rt,k in its t-th row and k-th column, with ι
and µ as previously defined, the elements given in Equation (27) be written in matrix form
as

C =
1

T

(
R− ιµ>

)> (
R− ιµ>

)
.

Conveniently, we can write the covariance matrix in square root form as C = B>B where
the square root matrix is

B =
1√
T

(
R− ιµ>

)
.

Note, of course, for T > n, that this square root matrix is not unique. That is, many different
B matrices can yield the same C. However, the B in our case is uniquely determined by
our data. Using the square root, the variance of the return of portfolio x is

σ2
P = x>B>Bx = y>y

where we have implicitly defined the T × 1 vector of artificial variables y = Bx. More
generally, in terms of the reference return %, we could have defined

B% =
1√
T

(
R− ι%>

)
(28)

and
y = B%x. (29)

In this chapter, we omit the subscript from B and infer its value from the context. Usually,
we deal with % = 0.

The artificial variable vector y and its components yt for t = 1, . . . , T have important
interpretations. In particular, yt is the return of the portfolio over period t that is in excess
of the reference return and normalized by

√
T . Therefore, using the negative parts of y, we

can write the semivariance simply as

s2 =
T∑
t=1

((yt)
−)2 =

(
y>
)− (

y
)−

=
(
x>B>

)− (
Bx
)−
.

15



In general
(
Bx
)− 6= (B)−(x)−. So, unlike variance, we cannot write semivariance in a simple

quadratic form s2 = ((x)−)> S ((x)−) for some universally applicable matrix S. If this were
possible, the problem could be solved with standard quadratic programming. Instead, we
will find that there exist regions in which semicovariance matrices are locally applicable. In
those regions, the problem is quadratic. To understand this, we need to examine the concept
of profitability lines.

The excess portfolio return for any period is the inner product of the vector of excess
returns for that period and the vector of portfolio weights. A period t is unprofitable if the
excess return for all permissible values of x is negative; i.e.,

yt ∝
n∑
i=1

(rt,i − %i)xi =
(
rt − %>

)
x < 0, (30)

where rt is the t-th row of matrixR. Since the sum of all weights must be one, this inequality
defines a half-plane in n−1-dimensional portfolio space. The unprofitable region for period
t is the set all points x that satisfy the inequality, and the profitability line is the locus of
points x that satisfy the equality (rt − %>) x = 0.

We therefore have stated a criterion according to which observations should, or should
not, be included in the computation of the semivariance.

The returns for period t will be included in the semivariance computation (Equation (26))
if that period is unprofitable.

In other words, if we define IS ⊆ {1, 2, . . . , T} to be the set of time periods that are
included in the semicovariance computation in a region of x, then period t is a member of
IS if the t-th element of y is negative. That is,

yt < 0 −→ t ∈ IS. (31)

Consider a practical example with % = 0. From Table 1, we see that any long-only
portfolio would be unprofitable in 1937 since all securities had negative returns in that
year. In contrast, in 1938, any long-only portfolio would be profitable since all securities
had positive returns in that year. Therefore the year 1937 should always be included in
calculations of the semivariance, but the year 1938 should never be included.

The case is not so trivial for years that have both positive and negative returns. Using
Equation (30) in these cases, we have the criterion that we should include period t if

rt,1x1 + rt,2x2 + rt,3x3 < 0.

Or, equivalently, since x3 = 1− x1 − x2, we should include period t if

(rt,1 − rt,3)x1 + (rt,2 − rt,3)x2 + rt,3 < 0. (32)

This defines the unprofitable region for year t. For the year, 1947, for example, we have
rt = [rt,1, rt,2, rt,3] = [−0.071, +0.169, −0.099], and from Equation (32), the unprofitable
region is

0.028x1 + 0.268x2 − 0.099 < 0.

The corresponding profitability line for 1947 is displayed in Figure 3. The shaded region is
the intersection of the unprofitable region, the non-negativity constraints (x1, x2, x3 ≥ 0),

16



and the budget constraint (x1 + x2 + x3 = 1). Any portfolios in this region should include
1947 in the calculation of the semivariance.

In a region of any portfolio vector x, therefore, there is a set of time periods that should
be included in the computation of the semivariance. Let B be the matrix obtained from B
by including only those rows (time periods) that lead to unprofitable portfolios in the region
of x. In this case, the semivariance can be written in the simple quadratic form

s2 =
(
x>B>

)− (
Bx
)−

= x>B>B x = x>S x

where we have defined the locally applicable semicovariance matrix (LSM) as S = B>B.

1947

Budget Line

x1

x2

1

1

0
0

Unprofitable Region 1947

Figure 3: Profitability Line and Unprofitable Region for 1947

Given a set IS and a critical line for that set that contains the current portfolio x, we
can find the value of λE at which the constituents of IS change. We can thereby determine
the borders of the current region. A region is locally applicable as long as portfolios within
it are unprofitable for all periods.

At the border of a region, moving along the critical line as λE decreases, the current
portfolio may be become profitable for one period that was previously unprofitable (so that
the period needs to be included in the semivariance computation), or a period that was un-
profitable may become profitable (so that the period must be excluded from the semivariance
calculation). Therefore, the borders are defined by lines of zero profitability.

At zero profitability, B%x = 0. Using Equation (28) for the specific case % = 0, prof-
itability lines are therefore defined by

Rx = 0. (33)

But, considering only the top block of Equation (16), we know that x = α+βλE. Using this
in Equation (33) and defining ξ = Rα and ζ = Rβ, the value of λE at which the critical

17



line crosses a profitability line for period t is

λE,t = −ξt
ζt

for ζt 6= 0 (34)

The particular period t entering or leaving the calculation of the LSM is the one correspond-
ing to the maximum value of λE,t that is less than the current value of λE.

We are now ready to describe the CLA for semivariance optimization. In brief, the
algorithm proceeds as follows:

1. Read data or compute where necessary µ, C, A, b, d, and u.

2. Using linear programming, find the portfolio x that maximizes expected portfolio re-
turn µ>x subject to the constraints Ax = b and d ≤ x ≤ u, and initialize the IN, UP,
and DN sets. This is independent of semivariance.

3. For the initial portfolio vector, calculate the locally applicable semicovariance matrix.

4. Set λE =∞.

5. Repeat while λE ≥ 0:

a. With the current IN, UP, and DN sets, together with the current locally applicable
semicovariance matrix, calculate C̄, Ā, M̄ , and k using steps S1 through S4.

b. Calculate α and β using Equation (17), and γ and δ using Equation (19).

c. Compute the λi,j ratios using steps L1 through L4 and form the Λ matrix.

d. Find the maximum value of Λ. Call this λsec to indicate that it is the λE at which
a security’s state changes.

e. Find the row that contains the maximum value of Λ. This is the number of the
security whose state will change at the next corner.

f. Find the column that contains the maximum value of Λ. This is an indicator of
the state change that the security will undergo at the next corner portfolio.

g. Using Equation (34), find the maximum value of λE,t at which the next profitability
line will be crossed. Call this λobs to indicate that is the λE,t at which the returns
of the observation in period t will either be added to, or removed from, the
calculation of the semivariance.

h. If λobs > λsec then an observation is leaving or entering the semicovariance calcu-
lation. Proceed as follows:

∗ Set λE = λobs. This is the critical value at the next corner portfolio.

∗ Calculate the portfolio at the next corner using x = α+ βλE.

∗ Using Equation (31), decide what observations should be included and ex-
cluded in the next segment of the critical line.

∗ Calculate the locally applicable semicovariance matrix and the locally appli-
cable M matrix.

18



i. Else, a security’s state is changing at the next corner. Proceed as follows:

∗ Set λE = λsec. This is the critical value at the next corner portfolio.

∗ Calculate the portfolio at the next corner using x = α+ βλE.

∗ Use the information from steps [e.] and [f.] to set the next state vector (and
thereby the next IN, UP, and DN sets).

j. Store information about the current corner.

We describe the details of the algorithm below.

4.1 Semivariance CLA R Implementation

We describe the CLA for mean-semivariance optimization with reference to the sample R
code given in Appendix B. As in the Python code in Appendix A, the first few blocks
(--B01-- through --B04--) define functions for creating the matrices Ā, C̄, and M̄ , and
vector µ̄, and for initializing the portfolio.

Blocks --B05-- through --B36-- define the dscla function for downside optimization
using the CLA. The function’s input parameters are the return matrix R represented by R,
the constraint matrix A = A and vector b = b, the lower and upper bound vectors d = lb

and u = ub, the reference return % = refret, and a tolerance scalar tol that is used to
decide if variables are sufficiently small to be considered to be zero. The default values of
refret and tol are zero and 10−9, respectively.

Block --B05-- finds basic properties of the returns data; the number of observations no
and securities ns, and the securities’ average return µ = mu. Block --06-- creates the initial
portfolio vector x that has maximum expected return and is constrained, in this example
case, only by the budget constraint and the lower and upper bounds.

Block --B07-- creates an integer vector state that represent the current state of the
critical line. This vector contains entries of zero corresponding to securities that are IN, −1
for securities that are DN, and +1 for securities that are UP.

Block --B08-- is the first block specific to the CLA for semivariance. It sets up the
excess return matrix Rex that represents R− ι%>. It also computes the time series y = y of
portfolio excess returns, and sets the logical vector obs.in that indicates which time periods
should be included in the computation of the semicovariance matrix for the current portfolio
vector.

In block --B09--, we use the indicator vector obs.in to create the local return matrix
Rloc that contains only observations that would lead to unprofitable portfolios for the current
region of x. With this, we compute the locally applicable semicovariance matrix Sloc, and
well as the local M matrix Mloc and its top block row Ploc.

In block --B10--, we allocate storage for the results of the CLA. Since we do not know
a priori how many corners the algorithm will find, we simply allocate the first value, and
then extend the result on each successful completion of the CLA loop.

Block --B11-- starts the CLA proper. In this block, we enter the CLA loop that repeats
as long as λE > 0. The variable lam represents λE (which has already been set to +∞). Block
--B12-- converts the integer state vector state into logical vectors UP, DN, and IN. These
vectors are used later in the code. The integer vector OT indicates the securities that are not

19



IN (i.e., are either UP or DN). Block --B13-- uses OT to form S̄, Ā, and M̄ from S, A, and
M in accordance with steps S1 and S2, and Equation (14) above.

Block --B14-- computes the vector k = k using Equation (12) and the right-hand side
vectors for finding α and β using Equation (17). With these, block --B19-- computes α,
β, γ, and δ using Equations (17) and (19).

At this stage, the current segment of the efficient frontier is fully defined. The portfolios
on the segment satisfy x = α + βλE for the current α = alf.sec and β = bet.sec.
The algorithm is therefore ready to find the value of λE at which either the portfolio state
vector state changes, or the LSM Sloc changes. That value of λE is determined from the
maximum of Λ from Equation (24) and λE,t from Equation (34). The next steps, therefore,
are to calculate Λ and λE,t.

Blocks --B17-- through --B20-- calculate the columns λIU, λID, λUI, and λDI. Then
block --B21-- juxtaposes them to form Λ, represented by variable L.

The row that contains the maximum value of L represents which security is changing
state. The index of this security, secchg, is found in block --B22--. The column that
contains the maximum value of L represents the direction in which the security’s state is
changing. The index of this change, dirchg, is found in block --B23--. Block --B24--

stores lam.sec, the maximum value of λE for a security state change.
While blocks --B17-- through --B24--, described above, focus on what security state

changes might occur, blocks --B25-- and --B26-- focus on what changes might affect the
computation of the LSM. Specifically, block --B25-- computes ξ = Rα (represented by the
variable num) and ζ = Rβ (represented by the variable den). The maximum value of the
ratio rat = num / den, where it is defined and less than the previous value of λE, is the
value of λE at which the profitability region changes and observations in the LSM change.
Block --B26-- finds this maximum value and assigns it to the variable lam.obs.

Block --B27-- decides whether the next change is a change of a security’s state or a
change of the profitability region. If lam.obs > lam.sec, the next change is a profitability
region change in which observations in the LSM change. On the other hand, if lam.obs ≤
lam.sec, the next change is a security state change. Blocks --B28-- through --B31--

handle profitability region changes, and blocks --B32-- through --B34-- handle security
state changes.

For a change in profitability region, blocks --B28-- and --B29-- set the value of λE

and compute the portfolio vector x at the next corner. Block --B30-- creates the vector
obs.in that indicates which periods are unprofitable in the region of x using Equation (31).
With this vector, it computes the LSM, Sloc. Block --B31-- sets the local matrix M in
Equation (14), and its top block row P .

Referring back to block --B27--, if the next value of λE had indicated a change of
security state rather than a change pf profitability region, the algorithm would have skipped
to block --B32--, which sets the new value of λE appropriately. Block --B33-- computes
the portfolio vector at the next corner. Block --B34-- sets the new state vector state

appropriately, recalling that the integer secchg is the number of the security that changes
state, dirchg represents the direction of the change with a value of 1 indicating a change
from IN to UP, 2 indicating a change from IN to DN, and values of 3 or 4 indicating a change
to from UP or DN to IN.

We emerge from the if else statement to block --B35--, where we now have three

20



Security
λE 1 2 3
∞ 0.0000 1.0000 0.0000

0.2898 0.0000 1.0000 0.0000
0.1579 0.0000 0.8902 0.1098
0.1450 0.0000 0.8704 0.1296
0.0665 0.0000 0.6623 0.3377
0.0358 0.0000 0.5205 0.4795
0.0300 0.0000 0.4919 0.5081
0.0284 0.1210 0.3567 0.5223
0.0263 0.2740 0.1858 0.5402
0.0077 0.6706 0.0000 0.3294

0 0.7688 0.0000 0.2312

Table 3: Critical Values and Corner Portfolios for Semivariance Optimization

important quantities pertaining to the current corner: the value of λE = lam, the portfolio
vector x = x, and the state vector state. Block --B35-- stores relevant quantities together
with the current expected return and semivariance.

With the new value of λE and state vector state, we can go back to block --B11-- to
reenter the CLA loop, or exit the program if λE ≤ 0.

In Block --B36--, the function saves the efficient frontier in the list ef, and returns it
to the calling program.

To find the efficient frontier, the program loads data in Block --B37-- and defines the
constraints in block --B38--. Finally, in block --B39--, it calls the downside CLA function
dscla.

4.2 Example

We again use the data from Table 1, but now wish to find the mean-semivariance effi-
cient frontier rather than the mean-variance efficient frontier. Saving this table in the tab-
separated variable file example.tsv and running the R script from Appendix B, we obtain
the critical values and corner portfolios (rounded to four decimal places) in Table 3. The
table shows that the maximum return portfolio subject only to the long-only and budget
constraints is x = [0, 1, 0]. This portfolio assigns the highest allowable weight to security 2
since this security has the highest sample mean return.

The algorithm finds the first corner portfolio at λE = 0.2898, and then at successively
lower values until it reaches a minimum at λE close to zero, which corresponds to the lowest
variance portfolio subject to the constraints. Figure 4 shows the weights of the securities
as a function of λE, and Figure 5 shows the weights of the securities as a function portfolio
return. Figure 6 shows the corresponding efficient frontier.

21



0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3

lambda

w
ei

gh
t

security

1

2

3

Figure 4: Semivariance Portfolio Weights as a Function of λE

0.00

0.25

0.50

0.75

1.00

0.09 0.11 0.13

return

w
ei

gh
t

security

1

2

3

Figure 5: Semivariance Portfolio Weights as a Function of Portfolio Return

22



0.09

0.11

0.13

0.06 0.07 0.08 0.09

Semi−Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

Figure 6: Mean-Semivariance Efficient Frontier

23



5 The MTXY Method

While the CLA is the most computationally economical way to find the entire efficient fron-
tier, there exist a number of shortcuts that allow one to find individual points on the efficient
frontier without mapping it out completely. For standard mean-variance optimization, one
can use quadratic programming to find such points for given expected return, or for given
variance, or for given λE.

In mean-semivariance optimization, though, shortcuts are not so readily available because
of the locally applicable nature of the semicovariance matrix. However, a simple reformu-
lation described in Markowitz, Todd, Xu, and Yamane [1992, 1993] (the MTXY method)
allows one to find individual efficient points if one uses historical samples to form an estimate
of the semicovariance matrix.

For a given required expected portfolio return µP, the mean-semivariance problem is to
find x so as to

minimize ((y)−)
>

((y)−)
subject to µ>x = µP,

Ax = b,
B%x− y = 0,

x ≥ 0.

 (SV1)

This problem cannot be solved in its current form using quadratic programming because of
the presence of the “negative part” operator.

Nevertheless, following Markowitz, Todd, Xu, and Yamane [1992, 1993], we can convert
this into a standard form by defining new non-negative variables that separately represent
the positive parts and absolute values of the negative parts of y. That is, let n = |(y)−|
hold the absolute values of the negative parts of y, and let p = (y)+ = y − (y)− hold
the positive parts. We therefore have that y = p − n. Then, using Equation (29), we
arrive at the constraint B%x = p− n. The objective now simplifies to n>n. Therefore, the
mean-semivariance problem (SV1) is equivalent to finding x, p, and n so as to

minimize n>n
subject to µ>x = µP,

Ax = b,
B%x− p+ n = 0,

x ≥ 0,
p ≥ 0,
n ≥ 0.


(SV2)

The major disadvantage of this simple approach is that it increases the number of vari-
ables from n for x to n + 2T for x, p, and n. Naturally, T can be large, and this increases
the computational burden significantly. Despite this, for typical institutional portfolios, and
for standard desktop computer hardware, the computational burden is not prohibitive. If
minimal computational burden is absolutely essential, one can use the streamlined version
described in Markowitz, Todd, Xu, and Yamane [1992, 1993]. Those papers describe how to
reduce the dimension of the problem at the expense of slightly more tricky matrix manipu-
lations.

24



The sample R function downside.cvx in Appendix C solves Problem (SV2) using the
CVXR package of Fu, Narasimhan, and Boyd [2017], which demonstrates the ease of using
disciplined convex optimization [Grant, 2004] in this case. The input parameters to the
function are the required return µP = reqret, the vector of expected security returns µ = mu,
and the matrix of centered, normalized returns B = B.

Block --C01-- loads the required CVXR library, and block --C02-- sets the dimensions
of the problem. Block --C03-- declares the vectors x = x, p = p, and n = n to be
decision variables in the optimization problem. Block --C04-- defines the objective obj of
the optimization to be minimization of the sum of the squares of the negative parts of y.

Block --C05-- defines the constraints. C1 through C3 are the non-negativity constraints
on the decision variables. C4 constrains the portfolio return to be equal to required return,
and C5 is the budget constraint. C6 implements the constraint B%x = p − n. Finally, C1
through C6 are gathered together in the constraint list con.

Block --C06-- defines the problem prb in terms of the objective obj and constraints
con, and block --C07-- solves the problem, putting the result into list sol. Finally, block
--C08-- extracts the values of x, p, and n from sol and returns them to the calling function.

6 Conclusion

It is often agreed that, intuitively, mean-semivariance portfolio optimization is more sensible
than mean-variance optimization, but it is also often assumed that mean-semivariance opti-
mization is too difficult. Even though the mean-semivariance problem was solved more than
sixty years ago, portfolio managers are more familiar and comfortable with mean-variance
optimization. Mean-semivariance optimization has, to a large extent, been forgotten. The
purpose of this chapter is to serve as a reminder of the simplicity and intuitive appeal of
mean-semivariance optimization, and to revive interest in it.

To accomplish this end, we provide a tutorial review of the theory of the critical line
algorithm (CLA) as applied to standard mean-variance portfolio optimization. Coupled to
the theory, we provide sample Python code to illustrate the ease with which the CLA traces
out the entire efficient frontier. The Python code contains extensive comments that links
the code closely to the theory.

Following this, we show how one can reduce downside exposure using mean-semivariance
optimization. In general, mean-semivariance optimization is difficult to perform. However,
the problem can be simplified dramatically if one uses an estimate of the covariance matrix
derived from historical asset returns. In this case, one works with a particular square root
of the covariance matrix from which the portfolio’s semivariance is easily computed. We
provide an explanation of this theory, and follow with sample R code that is extensively
cross-referenced to the theory.

Finally, we show how to use the historical square root of the covariance matrix to write the
mean-semivariance problem in standard quadratic form, and we provide a simple R function
to find the optimal mean-semivariance portfolio for any feasible expected portfolio return.

25



Appendix A: Sample Python Code for Mean-Variance

CLA

1 import numpy as np

2

3 # --A01 --

4 def zerorows(x, j):

5 y = x.copy()

6 for k in j:

7 y[k] = 0

8 return y

9

10 # --A02 --

11 def zerocols(x, j):

12 y = x.copy()

13 for k in j:

14 y[:,k] = 0

15 return y

16

17 # --A03 --

18 def bar(x, j):

19 y = x.copy()

20 for k in j:

21 y[k] = 0

22 y[k,k] = 1

23 return y

24

25 # --A04 -- Portfolio Initialization.

26 def initport(mu , lb , ub):

27 x = lb.copy()

28 ii = np.argsort(-mu , axis =0)

29 amtleft = 1 - np.sum(x)

30 ix = 0

31 ns = mu.shape [0]

32 while (( amtleft > 0) and (ix < ns)):

33 i = ii[ix]

34 chg = min(ub[i]-lb[i], amtleft)

35 x[i] = x[i] + chg

36 amtleft = amtleft - chg

37 ix += 1

38 return(x)

39

40 # --A05 -- Read the raw data.

41 ret = np.genfromtxt(’example.tsv’, delimiter="\t")

42 ret = np.delete(ret , 0, 1)

43

44 # --A06 -- Set initial parameters.

45 ns = ret.shape [1]

46 lb = 0.1 * np.ones([ns , 1])

47 ub = 0.5 * np.ones([ns , 1])

48 A = np.ones([1, ns])

49 b = 1.0

50 m = 1

26



51 tol = 1E-9

52

53 # --A07 -- Compute basic statistics of the data.

54 mu = np.mean(ret , axis =0).reshape ([ns , 1])

55 C = np.cov(ret.T)

56

57 # --A08 -- Initialize the portfolio.

58 x = initport(mu, lb, ub)

59

60 # --A09 -- Set the state vector.

61 up = 1 * (abs(x - ub) < tol)

62 dn = 1 * (abs(x - lb) < tol)

63 s = np.subtract(up, dn)

64

65 # --A10 -- Set the P matrix.

66 P = np.concatenate ((C, A.T), axis =1)

67

68 # --A11 -- Initialize storage for quantities

69 # to be computed in the main loop.

70 LAM = float(’inf’)

71 lam = float(’inf’)

72 X = x.copy()

73 V = np.matmul(x.T, np.matmul(C, x))

74 R = np.matmul(mu.T, x)

75 S = s.copy()

76

77 # --A12 -- The main CLA loop , which steps

78 # from corner portfolio to corner portfolio.

79 while lam > 0:

80

81 # --A13 -- Create the UP, DN, and IN

82 # sets from the current state vector.

83 UP = s > +0.9

84 DN = s < -0.9

85 IN = np.invert(np.logical_or(UP , DN))

86

87 # --A14 -- Create the Abar , Cbar , and Mbar matrices.

88 io = np.where(np.logical_not(IN))[0]

89 Abar = zerocols(A, io)

90 Cbar = bar(C, io)

91 toprow = np.concatenate ((Cbar , Abar.T), axis =1)

92 botrow = np.concatenate ((Abar , np.zeros([m, m])), axis =1)

93 Mbar = np.concatenate ([toprow , botrow], axis =0)

94

95 # --A15 -- Create the right -hand sides for alpha and beta.

96 up = np.multiply (1 * UP , ub)

97 dn = np.multiply (1 * DN , lb)

98 k = np.add(up, dn)

99 bot = b - np.matmul(A, k)

100 top = zerorows(mu , io)

101 rhsa = np.concatenate ([k, bot], axis =0)

102 rhsb = np.concatenate ([top , np.zeros([m, m])], axis =0)

103

104 # --A16 -- Compute alpha , beta , gamma , and delta.

27



105 alpha = np.linalg.solve(Mbar , rhsa)

106 beta = np.linalg.solve(Mbar , rhsb)

107 gamma = np.matmul(P, alpha)

108 delta = np.matmul(P, beta) - mu

109

110 # --A17 -- Prepare the ratio matrix.

111 L = -float(’inf’) * np.ones([ns, 4])

112

113 # --A18 -- IN security possibly going UP.

114 for i in np.where(IN & (beta[range(ns)] < -tol))[0]:

115 L[i,0] = (ub[i] - alpha[i]) / beta[i]

116

117 # --A19 -- IN security possibly going DN.

118 for i in np.where(IN & (beta[range(ns)] > +tol))[0]:

119 L[i,1] = (lb[i] - alpha[i]) / beta[i]

120

121 # --A20 -- DN security possibly going IN.

122 for i in np.where(UP & (delta < -tol))[0]:

123 L[i,2] = -gamma[i] / delta[i]

124

125 # --A21 -- UP security possibly going IN.

126 for i in np.where(DN & (delta > +tol))[0]:

127 L[i,3] = -gamma[i] / delta[i]

128

129 # --A22 --If all elements of ratio are negative ,

130 # we have reached the end of the efficient frontier.

131 if np.max(L) < 0:

132 lam = -float(’inf’)

133 break

134

135 # --A23 -- Find which security is changing state.

136 secmax = np.max(L, axis =1)

137 secchg = np.argmax(secmax)

138

139 # --A24 -- Find in which direction it is changing.

140 dirmax = np.max(L, axis =0)

141 dirchg = np.argmax(dirmax)

142

143 # --A25 -- Set the new value of lambda_E.

144 lam = np.max(secmax)

145

146 # --A26 -- Set the state vector for the next segment.

147 s[secchg] = (+1 if dirchg == 0 else

148 -1 if dirchg == 1 else

149 0

150 )

151

152 # --A27 -- Compute the portfolio at this corner.

153 x = alpha[range(ns)]+ lam * beta[range(ns)]

154 v = np.matmul(x.T, np.matmul(C, x))

155 r = np.matmul(mu.T, x)

156

157 # --A28 -- Save the data computed at this corner.

158 X = np.concatenate ([X, x], axis =1)

28



159 S = np.concatenate ([S, s], axis =1)

160 V = np.append(V, v)

161 R = np.append(R, r)

162 LAM = np.append(LAM , lam)

29



Appendix B: Sample R Code for Mean-Semivariance

CLA

1 ############################################################

2 ## Utility functions. ##

3 ############################################################

4

5 # --B01 -- Function to set rows j of matrix X to zero.

6 zerorows <- function(X, j) {

7 Y = X; for (k in j) Y[k,] <- 0; return(Y)

8 }

9

10 # --B02 -- Function to set columns j of matrix X to zero.

11 zerocols <- function(X, j) {

12 Y <- X; for (k in j) Y[,k] <- 0; return(Y)

13 }

14

15 # --B03 -- Function to set rows j of matrix X to zero ,

16 # and diagonal elements j with 1.

17 overbar <- function(X, j) {

18 Y <- zerorows(X, j);

19 for (k in j) Y[k,k] <- 1; return(Y)

20 }

21

22 # --B04 -- Function to initialize a long -only portfolio

23 # subject only to the budget constraint.

24 initport <- function(mu, lb, ub) {

25 xinf <- lb; amtleft <- 1 - sum(xinf)

26 ii <- order(-mu); ns <- dim(mu)[1]

27 ix <- 1

28 while (( amtleft > 0) & (ix <= ns)) {

29 i <- ii[ix]

30 chg <- min(ub[i]-lb[i], amtleft)

31 xinf[i] <- xinf[i] + chg

32 amtleft <- amtleft - chg

33 ix <- ix + 1

34 }

35 return(xinf)

36 }

37

38 ############################################################

39 ## Critical Line Algorithm for Downside Optimization. ##

40 ############################################################

41 dscla <- function(R, A, b, lb, ub, refret=0, tol=1E-9) {

42

43 # --B05 -- Basic properties of returns data.

44 no <- dim(R)[1]

45 ns <- dim(R)[2]

46 mu <- matrix(colMeans(R), ncol =1)

47

48 # --B06 -- Initialize portfolio with Sharpe ’s method.

49 x <- initport(mu, lb, ub)

50 x <- matrix(x, ncol =1)

30



51

52 # --B07 -- Set the initial state vector.

53 state <- matrix ((x == ub) - (x == lb), ncol =1)

54

55 # --B08 -- Find which securities should be included

56 # in the initial locally applicable semicovariance matrix.

57 Rex <- R - matrix(refret , no , ns , byrow=T)

58 y <- Rex %*% x

59 obs.in <- y < -tol

60

61 # --B09 -- Compute the locally applicable

62 # semicovariance matrix , Sloc , and set up

63 # the locally applicable P and M matrices.

64 Rloc <- Rex[obs.in ,]

65 Sloc <- t(Rloc) %*% Rloc / no

66 Ploc <- cbind(Sloc , t(A))

67 Mloc <- rbind(Ploc , cbind(A, 0))

68

69 # --B10 -- Initialize storage for quantities

70 # to be computed in the main loop.

71 portfolios <- x

72 semivars <- as.numeric(t(x) %*% Sloc %*% x)

73 returns <- sum(x * mu)

74 lambdas <- lam <- Inf

75

76 # --B11 -- Enter the main CLA loop.

77 while (lam > 0) {

78 lam.prv <- lam

79

80 # --B12 -- Set the logical state indicators from the

81 # state vector , and find securities that are OUT.

82 UP <- state > +0.9; DN <- state < -0.9

83 IN <- !(UP | DN); OT <- which(!IN)

84

85 # --B13 -- Create the Abar , Sbar , and Mbar matrices.

86 Sbar <- overbar(Sloc , OT); Abar <- zerocols(A, OT)

87 Mbar <- rbind(cbind(Sbar , t(Abar)), cbind(Abar , 0))

88

89 # --B14 -- Create the right -hand sides for alpha and beta.

90 k <- ub * UP + lb * DN

91 rhsa <- rbind(matrix(0, ns , 1), b-A%*%k)

92 rhsb <- rbind(zerorows(mu , OT), 0)

93

94 # --B15 -- Compute alpha , beta , gamma , and delta.

95 alf <- solve(Mbar , rhsa)

96 bet <- solve(Mbar , rhsb)

97 gam <- Ploc %*% alf

98 del <- Ploc %*% bet - mu

99

100 # --B16 -- Select alpha and beta for real securities

101 # only (i.e., exclude Lagrange multipliers).

102 alf.sec <- matrix(alf[1:ns], ncol =1)

103 bet.sec <- matrix(bet[1:ns], ncol =1)

104

31



105 # --B17 -- Check for IN security possibly going UP.

106 LIU <- matrix(-Inf , ns , 1)

107 i <- which(IN & (bet.sec < -tol))

108 if (length(i) > 0) LIU[i] <- (ub[i] - alf.sec[i]) / bet.sec[i]

109

110 # --B18 -- Check for IN security possibly going DN.

111 LID <- matrix(-Inf , ns , 1)

112 i <- which(IN & (bet.sec > +tol))

113 if (length(i) > 0) LID[i] <- (lb[i] - alf.sec[i]) / bet.sec[i]

114

115 # --B19 -- Check for UP security possibly going IN.

116 LUI <- matrix(-Inf , ns , 1)

117 i <- which(UP & (del < -tol))

118 if (length(i) > 0) LUI[i] <- -gam[i] / del[i]

119

120 # --B20 -- Check for DN security possibly going IN.

121 LDI <- matrix(-Inf , ns , 1)

122 i <- which(DN & (del > +tol))

123 if (length(i) > 0) LDI[i] <- -gam[i] / del[i]

124

125 # --B21 -- Form Lambda matrix for finding maximal lambda_E.

126 L <- cbind(LIU , LID , LUI , LDI)

127

128 # --B22 -- Find which security might change state.

129 secmax <- apply(L, 1, max , na.rm=T)

130 secchg <- which.max(secmax)

131

132 # --B23 -- Find the direction in which the state might change.

133 dirmax <- apply(L, 2, max , na.rm=T)

134 dirchg <- which.max(dirmax)

135

136 # --B24 -- Set the value of lambda_E for a changing security.

137 lam.sec <- max(secmax)

138

139 # --B25 -- Find the lambda_E ratios for possible

140 # constituent changes in the semicovariance calculation.

141 num <- Rex %*% alf.sec

142 den <- Rex %*% bet.sec

143 rat <- matrix(-Inf , no , 1)

144 i <- which(abs(den) > +tol)

145 if (length(i) > 0) rat[i] <- -num[i] / den[i]

146

147 # --B26 -- Find the maximum lambda_E for

148 # observations changing in the LSM.

149 lam.obs <- -Inf

150 i <- which(rat - lam.prv < -tol)

151 if(any(i)) lam.obs <- max(rat[i])

152

153 # --B27 -- Decide if the constituents of the LSM are

154 # changing or if a security ’s state is changing.

155 if (lam.obs > lam.sec) { # crossing a profitability line.

156

157 # --B28 -- Set lambda_E.

158 lam <- lam.obs

32



159

160 # --B29 -- Compute the portfolio at profitability line.

161 x <- alf.sec + lam * bet.sec

162

163 # --B30 -- Find which securities should be

164 # included in the next LSM , and compute it.

165 obs.in <- Rex %*% x < -tol

166 Rloc <- Rex[obs.in ,]

167 Sloc <- t(Rloc) %*% Rloc / no

168

169 # --B31 -- Form the local P and M matrices.

170 Ploc <- cbind(Sloc , t(A))

171 Mloc <- rbind(Ploc , cbind(A, 0))

172

173 } else { # a security ’s state is changing at a new corner.

174

175 # --B32 -- Set lambda_E.

176 lam <- lam.sec

177

178 # --B33 -- Compute the portfolio at this corner.

179 x <- alf.sec + lam * bet.sec

180

181 # --B34 -- Set the state vector for the next segment.

182 if (dirchg == 1) { # IN security going UP.

183 state[secchg] <- +1

184 } else if (dirchg == 2) { # IN security going DN.

185 state[secchg] <- -1

186 } else { # Security coming IN.

187 state[secchg] <- 0

188 }

189 }

190

191 # --B35 -- Save the data computed at this value of lambda_E.

192 portfolios <- cbind(portfolios , x)

193 semivars <- c(semivars , as.numeric(t(x) %*% Sloc %*% x))

194 returns <- c(returns , sum(x * mu))

195 lambdas <- c(lambdas , lam)

196 }

197

198 # --B36 -- Return a list representing the efficient frontier.

199 ef <- list(portfolios = portfolios ,

200 semivars = semivars ,

201 returns = returns ,

202 lambdas = lambdas)

203 return(ef)

204 }

205

206 ############################################################

207 ## Main Program. ##

208 ############################################################

209

210 # --B37 -- Read the raw returns data.

211 R <- as.matrix(read.table("example.tsv",

212 row.names = 1,

33



213 as.is = T))

214

215 # --B38 -- Set constraints.

216 ns <- dim(R)[2]

217 A <- matrix(1, 1, ns) # Budget constraint matrix.

218 b <- 1 # Budget constraint constant.

219 lb <- matrix(0, ns , 1) # Long -only

220 ub <- matrix (10, ns , 1) # No upper bound in practice.

221

222 # --B39 -- Call the Downside CLA function.

223 ef <- dscla(R, A, b, lb , ub , refret=0, tol=1E-9)

34



Appendix C: MTXY Method Sample CVXR Code

1 ###############################################################

2 ## Downside portfolio optimization with CVXR

3 downside.cvx <- function(reqret , mu, B) {

4

5 # --C01 -- Load the CVXR package.

6 suppressMessages(library(CVXR))

7

8 # --C02 -- Find the dimensions of the problem.

9 NT <- dim(B)[1]

10 NS <- dim(B)[2]

11

12 # --C03 -- Declare the variables.

13 x <- Variable(NS)

14 p <- Variable(NT)

15 n <- Variable(NT)

16

17 # --C04 -- Define the objective.

18 obj <- Minimize(sum(n^2))

19

20 # --C05 -- Define the constraints.

21 C1 <- x > 0

22 C2 <- p > 0

23 C3 <- n > 0

24 C4 <- sum(x * mu) == reqret

25 C5 <- sum(x) == 1

26 C6 <- B %*% x - p + n == 0

27 con <- list(C1 , C2 , C3 , C4 , C5 , C6)

28

29 # --C06 -- Set up the problem in terms of the

30 # objective and constraints.

31 prb <- Problem(obj , con)

32

33 # --C07 -- Solve the problem.

34 sol <- solve(prb)

35

36 # --C08 -- Create and return a list of results.

37 x.o <- sol$getValue(x)

38 p.o <- sol$getValue(p)

39 n.o <- sol$getValue(n)

40 res <- list(x=x.o, p=p.o, n=n.o)

41 return(res)

42 }

35



References

David H. Bailey and Marcos López de Prado. An Open-Source Implementation of the
Critical-Line Algorithm for Portfolio Optimization. Algorithms, 6(1):169–196, 2013.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Denisa Cumova and David Nawrocki. A Symmetric LPM Model for Heuristic Mean-
Semivariance Analysis. Journal of Economics and Business, 63(3):217–236, 2011.

Denisa Cumova and David Nawrocki. Portfolio Optimization in an Upside Potential and
Downside Risk Framework. Journal of Economics and Business, 71:68–89, 2014.

Javier Estrada. Mean-Semivariance Optimization: A Heuristic Approach. Journal of Applied
Finance, Spring/Summer:57–72, 2008.

Anqi Fu, Balasubramanian Narasimhan, and Stephen Boyd. CVXR: An R Package for
Disciplined Convex Optimization. Technical report, Stanford University, 2017. URL
https://web.stanford.edu/~boyd/papers/cvxr_paper.html.

Michael C. Grant. Disciplined Convex Programming. PhD thesis, Stanford University, 2004.

William W. Hager. Updating the Inverse of a Matrix. SIAM Review, 31(2):221–239, 1989.

Bruce I. Jacobs, Kenneth N. Levy, and David Starer. Practical Optimization of Enhanced
Active Equity Portfolios, Chapter 3 in Bernd Scherer and Kenneth Winston (Eds), The
Oxford Handbook of Quantitative Asset Management, pages 32–49. Oxford University
Press, Oxford, UK, 2012.

Haim Levy and Harry M. Markowitz. Approximating Expected Utility by a Function of
Mean and Variance. American Economic Review, 69(3):308–317, June 1979.

Harry Markowitz, Peter Todd, Ganlin Xu, and Yuji Yamane. Computation of Mean-
Semivariance Efficient Sets by the Critical Line Algorithm. Annals of Operations Research,
45(1):307–317, 1993.

Harry M. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Basil
Blackwell, Cambridge, MA, 1959.

Harry M. Markowitz. Mean-Variance Analysis in Portfolio Choice and Capital Markets.
Basil Blackwell, Cambridge, MA, 1987.

Harry M. Markowitz and G. Peter Todd. Mean-Variance Analysis in Portfolio Choice and
Capital Markets. Frank J. Fabozzi, New Hope, PA, 2000.

Harry M. Markowitz, Peter Todd, Ganlin Xu, and Yuji Yamane. Fast Computation of Mean-
Variance Efficient Sets using Historical Covariances. Journal of Financial Engineering, 1
(2):117–132, 1992.

36

https://web.stanford.edu/~boyd/papers/cvxr_paper.html


Andras Niedermayer and Daniel Niedermayer. Applying Markowitz’s Critical Line Algo-
rithm. In John B. Guerard, editor, Handbook of Portfolio Construction, pages 383–400.
Springer, 2009.

37


	Introduction
	The Critical Line Algorithm
	CLA Python Implementation
	Example

	The CLA for Semivariance
	Semivariance CLA R Implementation
	Example

	The MTXY Method
	Conclusion

